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Abstract: We study the invariance properties and exact solutions of the Kadomtsev-Petviashvili equation and construct its conservation
laws and that of its transformed elliptic and elliptic-cylindrical versions. Then, it is shown how the conservation laws and related
quantities of the transformed versions may be attained by applying the transformation variables as opposed to independent calculations
which are often cumbersome for high order partial differential equations of ‘many’ variables.
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1 Introduction

The Kadomtsev-Petviashvili (KP) equations originates in
the study of the surface wave problems for an
incompressible fluid described by the full set of Euler
equations with free surface and rigid horizontal bottom
boundary conditions. It has been extensively studied in a
number of papers ([1–5], inter alia, and references
therein). After some well known adjustments, the
equation takes the form

(ut +uux +uxxx)x +3s2uyy = 0. (1)

The transformation

τ = t, χ = x+
y2

12s2t
, v =

y
t

(2)

leads to the cylindrical KP (cKP) equation ([6,7]), with
w = w(τ,χ,v),

(wτ +6wwχ +wχχχ +
w
2τ

)χ +
3s2

τ2 wvv = 0 (3)

and the transformation

T = t, ζ = x+
ty2

12s2(t2 −a2)
, ν =

y√
t2 −a2

(4)

with h = h(T,ζ ,ν) lead to the elliptic cylindrical KP
equation (ecKP)

(hT +6hhζ +hζζ ζ +
T

2(T 2−a2)
h− a2ν2

12s2(T 2−a2)
hζ )ζ

+ 3s2

(T 2−a2)
hνν = 0.

(5)

For a detailed account on the nature, application and
reasons for the respective transformations, we refer the
reader to [6]. The inverse transformations in the
respective cases above are

t = τ, x = χ − τv2

12s2 , y = τv (6)

and

t = T, x = ζ − T ν2

12s2 , y =
√

T 2 −a2ν. (7)

In this paper, we, firstly study the invariance
properties of equation (1) and show how this lead to exact
solutions. That is, we determine the one parameter Lie
groups of transformations (Lie point symmetry
generators) to successively reduce the equation. We then
construct the conserved vectors of the equation using the
method of multipliers and the homotopy operator. Next,
we list, independently, the conservation laws of the
transformed equations cKP and ecKP. As a final emphasis
of the study, we show that the conserved vectors of the
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cKP and ecKP are, in fact, obtainable from the
transformed variables. Since, there is a one to one
correspondence between the multipliers and conserved
vectors, we need only perform the transformation on the
multipliers. Thus, all the properties of the KP obtained via
a study of the conservation laws are, equivalently,
obtainable for the cKP and ecKP. These include
integrability, convergence, conserved quantities and so on
([8]).

2 Symmetries, reductions and conservation
laws - KP

The Lie symmetry approach on differential equations is
well known; for details see e.g., [9,10].

We present some of the definitions and notations
below. Intrinsic to a Lie algebraic treatment of differential
equations is the universal space A (see [10]).The space
A is the vector space of all differential functions of all
finite orders and forms an algebra. Consider an rth-order
system of partial differential equations of n independent
variables x = (x1,x2, . . . ,xn) and m dependent variables
u = (u1,u2, . . . ,um)

Gµ(x,u,u(1), . . . ,u(r)) = 0, µ = 1, . . . , m̃, (8)

where u(1),u(2), . . . ,u(r) denote the collections of all first,
second, . . ., rth-order partial derivatives, that is,
uα

i = Di(uα),uα
i j = D jDi(uα), . . . respectively, with the

total differentiation operator with respect to xi given by

Di =
∂

∂xi +uα
i

∂
∂uα +uα

i j
∂

∂uα
j
+ . . . , i = 1, . . . ,n, (9)

where the summation convention is used whenever
appropriate. A current T = (T 1, . . . ,T n) is conserved if
it satisfies

DiT
i = 0 (10)

along the solutions of (8). It can be shown that every
admitted conservation law arises from multipliers
Qµ(x,u,u(1), . . .) such that

Qµ Gµ = DiT
i (11)

holds identically (that is, off the solution space) for some
current T . The conserved vector may then be obtained
by the homotopy operator (see [8,11]). Other works on
symmetries and conservation laws can be found in [12,13].

Definition A Lie-Bäcklund operator is given by

X = ξ i ∂
∂xi +ηα ∂

∂uα + ∑
s≥1

ηα
i1...is

∂
∂uα

i1...is
, (12)

where ξ i,ηα ∈ A and the additional coefficients are
determined uniquely by the prolongation formulae

ηα
i = Di(W α)+ξ juα

i j ,

ηα
i1...is = Di1 . . .Dis(W

α)+ξ juα
ji1...is , s > 1.

(13)

In (13), W α is the Lie characteristic function given by

W α = ηα −ξ juα
j . (14)

A Lie symmetry generator of (8) is a one parameter
Lie group transformation that leaves the given differential
equation invariant under the transformation of all
independent variables and dependent variables. In this
paper, we will assume that X is a Lie point operator, i.e.,
ξ and η are functions of x and u and are independent of
derivatives of u. A Lie-Bäcklund operator of the form
X̃ = ηα ∂/∂uα + · · · is called a canonical or evolutionary
representation of X .

2.1 Symmetries and reductions

A one parameter Lie group of transformations that leave
invariant (1) will be written as a vector field

X = τ(t,x,y,u)∂t +ξ (t,x,y,u)∂x +η(t,x,y,u)∂u
+ϕ(t,x,y,u)∂u.

(15)

This would be a generator of point symmetry of the
system. The tedious calculations reveal the following
point symmetry generators

X1 = 6F1(t)∂x +F ′
1∂u,

X2 =−36F2(t)∂y +
6
s2 yF ′

2∂x +
1
s2 yF ′′

2 ∂u,

X3 = 108F3(t)∂t +(36xF ′
3 −

6
s2 y2F ′′

3 )∂x +72yF ′
3∂y

+(6xF ′′
3 −72uF ′

3 −
1
s2 y2F ′′′

3 )∂u
(16)

where the Fis are arbitrary functions of t. In X3, for e.g.,
F3 = t leads to the scaling transformation
3t∂t + x∂x + 2y∂y − 2u∂u. Also, we can easily show that a
linear combination of the appropriate choice of Fis lead
to the translations

X1 = ∂t , X2 = ∂x, X3 = ∂y.

The first two, in the first instance yield the transformation
α = x− ct, y = y and u = u, so that equation (1) become

−cuαα +6u2
α +6uuαα +uαααα +3s2uyy = 0, (17)

which admits a Lie point symmetry generator X1 = ∂α and
X2 = ∂y. These symmetries yield the transformation γ =
y− kα and u = u. The equation (17) under new invariant
transformation becomes

(−ck2 +3s2 +6k2u)uγγ +6k2u2
γ + k4uγγγγ = 0. (18)

By integrating equation (18) with respect to γ twice, we
have

(−ck2 +3s2)u+3k2u2 + k4u′′ = bγ +d, (19)

where b and d are integrating constant. For b ̸= 0, equation
(19) have no symmetry generator, which implies no further
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reduction is possible. To this end, we consider b = 0 with
d ̸= 0. Suppose H = u, K = u′ and hence

dK

dH
=

u′′

u′
=

d − (−ck2 +3s2)H −3k2H 2

k4K
,

implies

du
dγ

=

√
2

k2

√
du− 1

2
(−ck2 +3s2)u2 − k2u3,

and consequently the solution of equation (1) is given as∫ 1√
du− 1

2 (−ck2+3s2)u2−k2u3
du

=
√

2
k2 [y− k(x− ct)]

(20)

2.2 Conservation Laws

The conserved vectors of (1) will be written
(T t ,T x,T y), i.e.,

DtT
t +DxT

x +DyT
y = 0 (21)

along the solutions of the differential equation. By
omitting the calculation details, we directly write below
the set of multipliers Q and their corresponding conserved
vectors for the system (1).

(i) Q1 =− 1
18s2 y(y2F1

t −18s2xF1(t))

T t
1 =− 1

36s2 y(y2F1′ux +18s2F1(u− xux)),

T x
1 =− 1

36s2 y(u(−y2F1′′+6F1′(3s2x+2y2ux))

+y2F1′(ut +2uxxx)
+18s2F1(6u2 − xut −12xuux +2uxx −2xuxxx)),

T y
1 =−3s2xF1(u− yuy)− 1

6 y2F1′(−3u+ yuy)

(ii) Q2 =− 1
6s2 (y2F2

t −6s2xF2(t))

T t
2 = 1

12 (−
y2F2′ux

s2 −6F2(u− xux)),

T x
2 =− 1

12s2 [u(−y2F2′′+6F2′(s2x+2y2ux))

+y2F2′(ut +2uxxx)
+6s2F2(6u2 − xut −12xuux +2uxx −2xuxxx)],

T y
2 = yuF2′+ 1

2 (6s2xF2 − y2F2′)uy

(iii) Q3 = yF3(t)

T t
3 = 1

2 yF3ux,

T x
3 = 1

2 y(−u(F3′−12F3ux)+F3(ut +2uxxx)),
T y

3 =−3s2F3(u− yuy)

(iv) Q4 = F4(t)

T t
4 = 1

2 F4ux,

T x
4 = u(−F4 ′

2 +6F4ux)+
1
2 F4(ut +2uxxx)3s2F4uy,

T y
4 = 3s2F4uy

3 Conservation laws - cKP and ecKP

Here, firstly, we use a combination of the multiplier and
homotopy approach, as in the previous section, to obtain
the multipliers and their corresponding conservation laws
for cKP and ecKP, respectively. As would be expected,
they admit four independent conservation laws given
below.

The CKP admits the following four conserved vectors
(i)

T τ
1 = 1

72s2 [−2v3τ2G1′wχ
+G1(−36s2vw+ v(v2τ +36s2χ)wχ)],

T
χ

1 = 1
72s2τ v(τ(w(2v2τ2G1′′+G1′(v2τ −36s2χ

−24v2τ2wχ))−2v2τ2G1′(wτ +2wχχχ))
+G1(−216s2τw2 +12w(3s2χ + τ(v2τ +36s2χ)wχ)
+τ((v2τ +36s2χ)wτ
−72s2wχχ +2(v2τ +36s2χ)wχχχ))),

T v
1 = 1

12τ2 [−2v2τ2G1′(−3w+ vwv)

+G1(−3(v2τ +12s2χ)w+ v(v2τ +36s2χ)wv)].

(ii)

T τ
2 = 1

24s2 [−2v2τ2G2′wχ
+G2(−12s2w+(v2τ +12s2χ)wχ)],

T
χ

2 = 1
24s2τ (τ(w(2v2τ2G2′′

+G2′(v2τ −12s2χ −24v2τ2wχ))

−2v2τ2G2′(wτ +2wχχχ))
+G2(−72s2τw2 +12w(s2χ + τ(v2τ +12s2χ)wχ)
+τ((v2τ +12s2χ)wτ
−24s2wχχ +2(v2τ +12s2χ)wχχχ))),

T v
2 = 1

4τ2 [−2vτ2G2′(−2w+ vwv)

+G2(−2vτw+(v2τ +12s2χ)wv)].

(iii)

T τ
3 = 1

2 vG3wχ ,

T
χ

3 = 1
2τ [v(−τwG3′+G3(w(1+12τwχ)

+τ(wτ +2wχχχ)))],
T v

3 =− 1
τ2 (3s2G3(w− vwv)).

(iv)
T τ

4 = 1
2 G4wχ ,

T
χ

4 = 1
2τ [−τwG4′+G4(w(1+12τwχ)

+τ(wτ +2wχχχ))],
T v

4 = 1
τ2 (3s2G4wv).

The corresponding multipliers are

Q̄1 =
1

36s2 v[36G1(τ)χs2 −2v2τ2G1
τ + v2τG1],

Q̄2 =
1

12s2 [12G2(τ)χs2 −2v2τ2G2
τ + v2τG2]

Q̄3 = G3(τ)v,
Q̄4 = G4(τ)

.

Similarly, the corresponding multipliers and conserved
vectors for ecKP are

c⃝ 2014 NSP
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(i) Q1 =
1

36s2 ν [−2T 2H1
T ν2 +2a2H1

T ν2 +36H1(T )ζ s2 +T H1ν2]

T T
1 = 1

72s2 [−36s2νhH1 +ν((36s2ζ +T ν2)H1

+2(a2 −T 2)ν2H1′)hζ ],

T ζ
1 = 1

432s4(a2−T 2)
ν(−1296a2s4h2H1

+1296s4T 2h2H1 −6s2h(H1(36s2T ζ
+7a2ν2 −12(a2 −T 2)(36s2ζ +T ν2)hζ )

−(a2 −T 2)(2(−a2 +T 2)ν2H1′′

+H1′(−36s2ζ +T ν2 +24(a2 −T 2)ν2hζ )))

+2(a2 −T 2)ν2H1′(6s2(a2 −T 2)hT +a2ν2hζ
+12s2(a2 −T 2)hζζ ζ )
+H1(6s2(a2 −T 2)(36s2ζ
+T ν2)hT +a2ν2(36s2ζ
+T ν2)hζ +12s2(a2 −T 2)(−36s2hζζ
+(36s2ζ +T ν2)hζζ ζ ))),

T ν
1 = 1

12(a2−T 2 (3h((12s2ζ +T ν2)H1

+2(a2 −T 2)ν2H1′)−ν((36s2ζ
+T ν2)H1 +2(a2 −T 2)ν2H1′)hν)

(ii)

Q2 = 1
12s2 [−2T 2H2

T ν2 +2a2H2
T ν2 +12H2(T )ζ s2

−T H2ν2]

T T
2 = 1

24s2 [−12s2hH2 +((12s2ζ +T ν2)H2

+2(a2 −T 2)ν2H2′)hζ ],

T ζ
2 = 1

144s4(a2−T 2)
(−432a2s4h2H2 +432s4T 2h2H2

−6s2h(3H2(4s2T ζ +a2ν2 −4(a2 −T 2)(12s2ζ
+T ν2)hζ )− (a2 −T 2)(2(−a2 +T 2)ν2H2′′

+H2′(−12s2ζ +T ν2 +24(a2 −T 2)ν2hζ )))

+2(a2 −T 2)ν2H2′(6s2(a2 −T 2)hT +a2ν2hζ
+12s2(a2 −T 2)hζζ ζ )
+H2(6s2(a2 −T 2)(12s2ζ +T ν2)hT +a2ν2(12s2ζ
+T ν2)hζ +12s2(a2 −T 2)(−12s2hζζ
+(12s2ζ +T ν2)hζ ζ ζ ))),

T ν
2 = 1

4(a2−T 2 [2νh(T H2 +2(a2 −T 2)H2′)

−((12s2ζ +T ν2)H2 +2(a2 −T 2)ν2H2′)hν ]

(iii) Q3 = νH3(T )

T T
3 = 1

2 νH3hζ ,

T ζ
3 = 1

12s2(a2−T 2)
[ν(−6s2h((a2 −T 2)H3′

+H3(T −12(a2 −T 2)hζ ))+H3(6s2(a2 −T 2)hT
+a2ν2hζ +12s2(a2 −T 2)hζζ ζ ))],

T ν
3 = 1

a2−T 2 (3s2H3(h−νhν))

(iv) Q4 = H4(T )

T T
4 = 1

2 H4hζ ,

T ζ
4 = 1

12s2(a2−T 2)
[−6s2h((a2 −T 2)H4′

+H4(T −12(a2 −T 2)hζ ))+H4(6s2(a2 −T 2)hT
+a2ν2hζ +12s2(a2 −T 2)hζζ ζ )],

T ν
4 =− 1

a2−T 2 (3s2H4hν)

3.1 Conservation laws via transformations

The transformation (2) and transformation (4) transform
the equation (1) into cKP and ecKP, respectively. By
exploiting this fact, we show that one can avoid the
lengthly procedure and can directly obtain the
conservation laws by using these transformations. It is
sufficient to calculate the multipliers via the
transformations and as there is a one to one corresponding
between the conserve vector and the multiplier, the
conserved vectors can be constructed directly from the
homotopy integral. For illustration, we transform some
multipliers.

(a) Transformation of multipliers from KP to cKP
(i) The transformation of Q1 is

Q1 =− 1
18s2 y(y2F1

t −18s2xF1(t))

=− 1
18s2 (τv)[τ2v2F1

τ −18s2(χ + τv2

12s2 )F1(τ)]
=− 1

36s2 (τv)(2τ2v2F1
τ −36s2χF1 −3τv2F1).

If we let τF1(τ) = G1(τ), we get

Q1 =− 1
36s2 (τv)(2τ2v2( 1

τ G1
τ − 1

τ2 G1)

− 36s2

τ χG1 −3v2G1)
= 1

36s2 v[36G1χs2 −2v2τ2G1
τ + v2τG1],

which matches Q̄1 of cKP.
(ii) The transformation of Q2 is

Q2 =− 1
6s2 (y2F2

t −6s2xF2(t))

=− 1
6s2 ((τv)2F2

τ −6s2(χ + τv2

12s2 )F2(τ))
= 1

12s2 [−2τ2v2F2
τ +12s2(χ + τv2

12s2 )F2]

where, if we let F2(τ) = G2(τ), we obtain

Q2 =
1

12s2 [12G2(τ)χs2 −2v2τ2G2
τ + v2τG2],

which is the same as Q̄2 of cKP.
(b) Transformation of multipliers from KP to ecKP
The multiplier Q2 of KP leads to

Q2 =− 1
6s2 (y2F2

t −6s2xF2(t))

=− 1
6s2 [(

√
T 2 −a2ν)2F2

T −6s2(ζ − T ν2

12s2 )F2(T )]
= 1

12s2 (−2T 2ν2F2
T +2a2ν2F2

T
+12s2ζ F2 −T ν2F2)

c⃝ 2014 NSP
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Again, if we let F2(T ) = H2(T ), we obtain

Q2 = 1
12s2 [−2T 2H2

T ν2 +2a2H2
T ν2

+12H2(T )ζ s2 −T H2ν2],

which is Q2 of ecKP.
It is clear, therefore, that one can obtain the other

multipliers and hence the conservation laws for cKP and
ecKP from that of the KP.

4 Conclusion

In this study, via a knowledge of the Lie symmetry
generators, we have successively reduced the fourth order
KP to a first order ODE and further obtained an exact
solution. The conservation laws for KP, cKP, and ecKP
have been obtained independently. We have demonstrated
that the transformations used to transform KP to cKP and
ecKP can, in fact, be used to obtain the conservation laws
for cKP and ecKP. This fact is significant in the sense that
the interesting features, well known or otherwise, of the
KP, like the exact solutions, multipliers and conservation
laws can easily be achieved for the cKP and ecKP.

Acknowledgement AHK thanks the African Institute
of Mathematics (AIMS) for providing facilities to carry
out the research.
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