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1. Introduction

The nonlinear evolution equations (NLEEs) are encountered in a
variety of scientific fields, such as physics, chemistry, engineering
and others. A vast amount of research work has been investigated
in the study of exact solutions of the NLEEs, in particular, the soli-
tary wave solutions largely due to their frequent occurrence in nat-
ure. Besides their physical relevances, they serve as a bench mark
for accuracy of numerical schemes as well as prove to be quiet
handy in testing of computer algorithms. Due to the increased
interest in the NLEEs, a broad range of analytical and numerical
methods have been developed to construct exact solutions to
NLEEs. Some of these efficient methods are the Lie symmetry
method [1-3], Darboux transformation method [4], Jacobi elliptic
method [5], Painleve analysis [6], the inverse scattering method
[7], the Baklund transformation method [8], the conservation law
method [9], the Hirota bilinear method [10], the ansatz method
[11] and many other methods.

Zakharov and Kuznetsov [12] established an equation which is
related to nonlinear ion-acoustic waves (IAWs) in magnetized
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plasma including cold ions and hot isothermal electrons. Few
related studies concerning Zakharov and Kuznetsov and its gener-
alized form are discussed in [13-19]. The quantum hydrodynamic
(QHD) model is a generalization of the classical fluid model of plas-
mas where QHD transport equations are expressed with reference
to conservation laws for particle momentum and energy. Several
authors for instance, Stenflo et al. [20], Khan et al. [21] etc., have
used QHD model to study the linear and nonlinear waves in quan-
tum plasma. Further, the existence of a small number of ions along
with the electrons and positron in many astrophysical environ-
ments, attracted much attention and consequently lot of work
available in the literature (e.g.,[22,23]). It is well know that the
small amplitude wave propagation in a medium which posses both
the characteristics dispersive and dissipative terms can be best
modeled by Korteweg-deVries-Burgers (KdVB) equation. Mamun
and Shukla [24] and Shukla and Mamun [25] in their study
observed that the dissipative Burger term in KdVB was due to
the presence of kinematic viscosity in the plasma. Also, they were
able to generate dispersive shock wave in the plasma. El-Bedwehy
and Moslem derived the Zakharov Kuznetsov Burgers (ZKB) equa-
tion [26] in an electron-positron-ion (e-p-i) plasma and applied
their numerical results to the electrostatic fluctuations in the inter-
stellar medium. Masood et al. [27] studies the obliquely propagat-
ing nonlinear quantum ion acoustic shock wave in a viscous
quantum (e-p-i) magnetoplasma. They have used QHD model
with the small amplitude expansion method to independently
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derive the ZKB equation. They have used tanh method to obtain the V) Vi +V,
results. The symmetry V; + V, yields the following invariants
In this paper, we consider the (2+1)-dimensional ZKB equation h=t, s—x—y, u=f(h,s). (11)

and investigate it from the point view of Lie symmetries and con-
servation laws. By omitting the details of derivation, we directly
write ZKB equation in the form

U + AUy + DUy + Cllyyy — diy — euyy, =0, (1)

where a, b, ¢, d and e, with d and e being positive, are constant quan-
tities which involves the physical quantities like: mass; density;
magnetic field; kinematic viscosity; plasma frequency; superther-
mality; ion gyrofrequency, etc., while x,y and t are the independent
variables that represent the spatial and temporal variables respec-
tively, where as u(x,y,t) is the dependent variable that represents
the wave profile. For detail discussions reader is refer to [26,27].

The paper is organized in the following manner. In Section 2,
similarity reductions and explicit solutions are derived. In
Section 3, we will show that this equation is nonlinearly
self-adjoint. On the basis of the point symmetries, conservation
laws are constructed. Finally, the main findings of the paper are
recapitulated in Section 4.

2. Similarity reductions and exact solutions

The corresponding vector fields of (1) are

0 0 0 o 10
_$7 Vz—@, ‘/3—&7 V4—t&+*7 (2)
We make some discussions on the ZKB equation based on the
vector fields.

Vi

N v
For the generator V;, we have

U:f( 7h)7 (3)

where g =y, h =t are the group-invariants. Substituting (3)
into (1), one can get

fn—efeg=0. 4)
It is important to note that (4) is the celebrated Heat
equation.

(1) v,
For the generator V,, we get
u=f(r,h), (5)

where r = x,h =t are the group-invariants. Substituting (5)
into (1), we reduce it to the following PDE

fn+affy + bferr — dfiy = 0. (6)
(1) vy
For the generator Vs, we get
=f(r.2), (7)

where r = x,g =y are the group-invariants. Putting (7) into
(1), one can obtain

aﬂr+bfrrr+cfrgg_dfﬁ_efgg =0. 8)
(IV) Vy4
In this case, one can obtain
X
u=flhg)+, ©)

where h = t,g =y are the group-invariants. Substituting (9)
into (1), one can obtain

hfy +f — ehfys = 0. (10)

Treating f as the new dependent variable and h and s as new
independent variables, the ZKB Eq. (1) transforms to

fh+aff3+(b+c) sss_(d+e)fss:O- (12)

It is should been noted that all above reduced equation are
(1+1)-dimensional PDEs. It is also difficult to get solutions of them.
In order to get their solutions, once again, by using Lie symmetry
method. For the sake of simplicity, in what follows, we only con-
sider (12) in details.

The symmetry algebra of (12) is generated by the vector fields

4 Yzig Y3 = ha-i-la

Y=g ds’ aof

(13)

The combination Y + AY, of the two symmetries Y; and Y5 yields
the following invariants
f=Y(0), 0=s-h, (14)
and using (14) and (12) is transformed to the nonlinear ODE
¥ +a?¥ + (b+o)¥V" - (d+e)¥ =0. (15)
Now, we search a solution of (15) in a power series of the form
[28,29]
¥=> " (16)
n=0
Substituting (16) into (15), one can get

o0 [o ¢} n
—Jci — AZ(n + 1)Cny1 0" + acecy + aZZ(n + 1 —j)ciCni1 0"

n=1 n=1 j=0

+2(d+e)c; + d+e2n+1 )(N 4 2)Cny20™ + 6(b + C)c3
n=1
+(b+0)> (n+3)(n+2)(n+1)cp.36" = 0. (17)
n=1

Next, from (17), for the case of n = 0, one gets
/€1 — acocy — 2(d + e)c
6(b+c)

Generally, for n >

C3 =

(18)

1, one obtains

1 \
C"”:(b+c)(n+1)(n+2)(n+3) (A(n+1)cn+1—(d+e)(n+1)(n+2)
Cn+2*ai(n+1 j)Canﬂj). (19)

j=0

Thus, the power series solution of (16) is as follows

‘I’(@) =Cyp +C19+C292 +C393 =+ ch+39n+3

n=1
B 5 ACi—acecy —2(d+e)cy 5
=Co+C10+C0°+ 6(b+C) 0

N 1
+;(b+6)(n+ D)(n+2)(n+3) (“"H)cm

—(d+e)(n+1)(n+2)cy2 — azn:(n +1 —j)cjcnﬂj> 0", (20)
=0

Consequently, the exact power series solution of (1) can be
written as follows
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=Co+C1(X—Y— ) +Co(Xx—y— )’ +c3(x—y—it)?

+Y Cma(x—y—at)"

n=1

u(x.y,t)
3 =co+0i(x—y—at)

Ac1—acycy —2(d+e)c,

6(b+0) (x=y—2t)’

T+ (x—y—it)’ +

S 1
+;(b+c)<n+1)(n+2)<n+3)

n

(An+T1)cnq

—(d+e)(n+1)(n+2)cni2 —ai(n+l —j)cjc,,ﬂ,j) (x—y—t)"3
=0

21)

where ¢;(i =0,1,2,3) are arbitrary constants, the other coefficients
cn(n > 3) also can derived.

Remark 1. The explicit solutions of other equations can also be
derived in the same way. Here we do not list them for simplicity.

In order to search for others explicit solutions of Eq. (1), we
make use of the auxiliary equation, i.e., the Riccati equation of
the following "general form”

@ =T+pp+qp*, (22)

and use its solution to construct the solutions for ZKB equation.
Here, p,q,r are real constant. By omitting the details, we directly
write the general solution of (22) as

\/AW Cie2 $+/arq-p? _ Cze*g\/‘w p
20 CiedVar | cye VA 290
where C;,C, are arbitrary constants. By balancing the highest

derivative and nonlinear terms in (15), we assume the solution of
(1) of the form

¢ = (23)

f0)=ao + a1 + a2, (24)

where ay, a;,a, are constants to be determined.

Substituting the ansatz (24) along with (22) into (15), collecting
coefficients of monomials of ¢ with the aid of Maple, and then set-
ting each coefficients equal to zero, one gets

q*(b+c) 12 (5bp+5cp —d —e)q
=-12——=, a=-— )
a 5 a
. 5aao — 6p(d + Z) +60gr(b +c) 7 (25)
where qo is a arbitrary constant. Also,
(d +e)” = 25p?(b +¢)* + 100qr(b + c)*. (26)

From the asatz (24) and making use of Egs. (25) and (23), one
can get the explicit solution of (1)

u(x t)—_12q b+c VArq—p? Gy etV _ Ge Vit p
Yb= 2q C1€2‘/4rq p2+Cze 94 /4rq—p? 2(]
12(5bp+5cp—d—e)q
5
\/Eq_p‘zc]e\/m o Y
20 VP e e 2

here 6 =x —y — it, and 4 is given by (25).

The solution (27) is the general solution of ZKB equation and
therefore several independently real solutions can be obtained.
For instance, the exact solution (21) which was obtained by "tanh
method” in Ref. [27], can be retrieved from (27) by choosing

_ _ _ 9(d+e)* (d+e)*
Cl = CZ - lvP - 0,(10 = 25a(b+o)’ 100(b+c)2
compare the accuracy of the numerical results obtained in [26]

via (27).

2

) +ao, (27)

and qr =

. Similarly, one can

In particular, if we let C; =1,C; = —1,p =0, and 4rq — p?> > 0,

one can get
2
Y]
ety = —128 59 <\/Tcot h<g\/4rq7132> 2pq>
,%w(coth<gm> q>+a0 (28)

In particular, if we set C; = 1,C, = 1, and 4rq — p?> > 0, one can
derive

2
2 / —_n2
u(x,y,t):—lzq (ba+c)< 4r2qq P tan h<§\/4rq—p2> _2£q>
%—(5’31’*5‘-‘5“’—9)‘1@@h(gm>72%)%0.

3. Conservation laws of (1)

In this section, we obtain conservation laws for the ZKB
equation.

Theorem 1 ([30,31]). The system and its adjoint equation

F(X.,U,U(1),u(2)7-- -7u(3)) =0,

F'(x,u, v, uqy, ), U), V), - - Us)s V) = 0, (29)

has a formal Lagrangian, namely

L= vF(x,u,uq),up),...,Ugs)). (30)
In the following we recall the "new conservation theorem”
given by Ibragimov in [31].

Definition 1. [30,31] The first equation of (29) is said to be
nonlinearly self-adjoint if for some arbitrary function ¢(x,u) # 0,
we have

F*|v:d):;“(xvuvu(l)y-")F7 (31)

where / is an indeterminate variable coefficient.

Theorem 2 [32]. Every Lie point, Lie-Bécklund and non-local sym-
metry of Eq. (1) provides a conservation law for Eq. (1) and the adjoint

equation. Then the elements of conservation vector (C',C% C?) are

given by
i % | OL oL oL
C=¢L+W au“ - D; 6u“ + D;Dy YR "

Q, oL oL
+DJ(W)[<W>_Dk<<0u”>>+”' , (32)
ij ijk
where W* = n* ”u“
3.1. Nonlinear self-adjointness
For (1), the adjoint equation has the form
F' = —(0r + auvy + by + Cxyy + dvge + evyy) = 0, (33)
and the Lagrangian in the symmetrized form
L = v(u; + auuy + bl + Cllyyy — dily — ellyy ). (34)

If we substitute u instead of vin Eq. (33), one can find that Eq. (1) is
not recovered. Therefore, we can say Eq. (1) is not self adjoint. Next,
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we look for an explicit form of ¢(x,u) # 0 for Eq. (1) that holds Eq.
(33).

Ut + QUUx + DUxex + CUyy + AUk + evyy|y:¢(x_u)
= A(Ur + QuUly + DUy + Cllyyy — dUy — ellyy ). (35)
If we set v = ¢(t,x,y,u), one can get
Ur = ¢y + ylls,
Uy = ¢ + Pylly,
Ve = b + 2l + Dyl + Dylbes,
Uy = Py + 2yl + dyll) + Py llyy,
Vi = D + 3Dl + 3byully + 3l + Duully
+ 3Py Uxliax + Pyllocx,
Usyy = Py + Pyyully + 2dyyully + 2¢yuulixlly + 2y, Ly
+ Pl + Puulxlly + 2y Uy Ly + Pyyllyy
+ Dy lixllyy + Uy (36)
Plugging them into (35), one can arrive at the following
self-adjointness condition
b+ bulle + AU+ Pythe) APt 20Uy + by Uy + Py l)
+( Gy 26 ully + Dl + Dullyy ) +b (B + 3Dt 3l
+3 U+ Gty + 3Dyl + Pulboee) +C Dy + byl + 2 Prgully
+2hyulhxly + 2y g + Pty + Py Ll + 2y Uy Ly
+Puxllyy + Puylxllyy + Dy layy ) =2 (Ug + QUL + DUy + Cllyyy — dUiy — el ). (37)
From the coefficient of the term u,, one can get
A==y (38)
Note that the other coefficients of u and all of the derivative
yields
by =0, Chy =0, 3bd,, =0, 2¢hy,, =0, ¢, =0,
3Dy + 2ddpyy + Chyyy = 0, 2€Cehy, + 2Cdyy, =0,
3bgy, +2d¢, =0, coy, +2e¢, =0,
3bdsu + dbuy =0, Chyy + €0y =0,

¢p + AUPy + Dy + Ay + €y, 4 Chyy, = 0. (39)
Solve them, one can get the solution
C3 <(e\/"7y)261 + cz)
"= evhiveker . o
In particular, (39) has a special solution
¢ =1y +0C, (41)

where c1,c, and c¢; are constants. We, thus, have the following
statement.

Theorem 3. The ZKB Eq. (1) is nonlinearly self-adjoint with the
substitution v = ¢ and ¢ given by (40) or (41).

3.2. Conservation laws of (1)

We now construct the conservation laws by using the adjoint
equation and symmetries of (1). For (1), the adjoint equation is
given by

F = v + auvy + by + CUxy + dUxx + €0y, (42)

and the Lagrangian in the symmetrized form

1
L= v(ut + autly + by + §c(uxyy + Uyxy + Upye) — Qe — euyy)
(43)

Consider Theorem 2, the corresponding vector fields is given by

Veduytwd2uytwl s Sxytud

ot OX ay
0
The conservation law is decided by
Di(C") + Dx(C*) + Dy (C*) = 0. (45)

Here the conserved vector C = (C', C?,C?) are given by (32) and
the components given by

oL

1 _ o1 oL
C _gL+W0ut, (46)
) oL o dL oL oL
C=l+w {8ux Dx Oy + D Ol + Dy Olyyy
oL oL oL oL
W [auxx ~ D 8uxxj Wy [ny auxyy} W bum}
oL
+ Wy l=—1, 47
d L‘?uxyy} ' 47
oL oL oL
c “3L+W[ Dy——+Dy-——+D —]
9 Y Ouyy YUy T Oy
oL oL oL oL
N7 {ny 8”}»0/} Wy {Wyy D 8uyyx} W L(?uyxy}
oL
W {auyyx} 7 48)
that is
C'=¢L+ Wy, (49)
C=&L+W {auv — Dy(—dv) + Dy (bv) + Dy, ch)}
+ Wi(—dv — Dy(bv)) + W, (—Dy ch)) + Wxbv
1
+ Wy, 3¢?
= &L+ W(auv +dvy + bvw + %cvyy> — Wy(dv+bwy)
1 1
-w, 3¢ +b1/WXX+§cvay, (50)
3 _ 43 2 1
C =&L+W|-Dy(—ev)+ Dy §cv + Wy |-Dy §cv
1 2
+ W, |—ev— Dy §CZ/ + Wy §cv
3 2 1 1
=&CL+Wleyy +3C0y —§cvny -W, ev +3Clx
2
+ §CvWXy, (51)
with
W= ¢ — &'u, — Euy - Euy. (52)
Next, we consider following cases.
Case 1.
For the operator V = 2, we have
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W = —uy, (53) . (1 2 1
C = . tuy | | evy +§cvxy +§ctvyuxx
we can get the conservation vector of (1)
1 2
= o, (54) + tuyy | ev + 3% ) — gctvuxyx. (68)
) 1 It is clear that they are involves an arbitrary solution v of the
€ = —u( auv +dox + bvg + §vay +Un(dv +box) adjoint Eq. (33), and they presents an infinite number of the con-
1 1 servation laws.
+ §cufy vy — bvug, — 3 CUUy, (55)
2 1 1 4. Conclusions
C=_u (evy + §cvxy> + §cvyutx + Uy (ev + §ch)
In the present paper, by using the Lie symmetry groups, we
_ % CVlpy. (56) studied the symmetry properties, similarity reduction forms and
3 explicit solutions of the (2+1)-dimensional ZKB equation.
Case 2. Moreover, we also constructed the power series solution of the
For the generator V = 2, we get equation. At last, we derived the nonlinear self-adjointness of Eq.
X . . . . .
. (1), by virtue of this fact, infinitely many conservation laws of
W= —uy, (57) the equation are exhibited. Furthermore, the results obtained here
one can obtain the conservation vector of (1) can be useful in enhgncmg the unde.rstandmg of ponlmear propa-
gation of small amplitude electrostatic structures in dense, dissipa-
= _up (58) tive (e-p-i) magnetoplasmas.
— T UxY,
1
C* = —u, <auv + vy + vy + 50y | + Uun(dv+ by Acknowledgement
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