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a b s t r a c t 

We study the generalized fifth order KdV equation using group methods and conservation 

laws. All of the geometric vector fields of the special fifth order KdV equation are pre- 

sented. By using the nonclassical Lie group method, it is show that this equation does not 

admit nonclassical type symmetries. Then, on the basis of the optimal system, the symme- 

try reductions and exact solutions to this equation are constructed. For some special cases, 

we obtain additional nontrivial conservation laws and scaling symmetries. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 1 

Nonlinear evolution equations (NLEEs) are of impor- 2 

tance in nonlinear science, in particular in applied math- 3 

ematics and theoretical physics. Their solutions are im- 4 

portant in the understanding of nonlinear interaction and 5 

behaviors of complex system. There are various techniques 6 

[1–17] used to deal with NLEEs, some of the commonly 7 

used ways involve the generalized symmetries, nonlocal 8 

symmetries, nonclassical Lie group and classical Lie group 9 

method. 10 

∗ Corresponding author. Tel.: +86 13683181850. 

E-mail address: wanggangwei@bit.edu.cn (G. Wang). 

It is well known that differential equations (DEs) have 11 

a number fundamental structures, that is, symmetries and 12 

conservation laws (CLs). CLs play a key roles in DEs analy- 13 

sis, particularly in studies of existence, uniqueness and sta- 14 

bility of solutions. Various approaches have been used to 15 

handle symmetries and conservation laws of PDE systems 16 

(see [1–6] and the references therein). 17 

In the present paper, we use the group method and 18 

the multiplier approach to study the fifth order KdV equa- 19 

tion 20 

u t + αu 

n u x + βu x u xx + γ uu xxx + u xxxxx = 0 . (1) 

In particular, for n = 2 , one can get 21 

u t + αu 

2 u x + βu x u xx + γ uu xxx + u xxxxx = 0 , (2) 
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here α, β and γ are nonzero constants. Clearly, this equa- 22 

tion has two dispersive terms u xxx and u xxxxx . By choosing 23 

the real values of the parameters n , α, β and γ , one can 24 

get a variety of fKdV equations [7,8] such as, when n = 2 , 25 

the Sawada –Kotera (SK) equation 26 

u t + 5 u 

2 u x + 5 u x u xx + 5 uu xxx + u xxxxx = 0 , (3) 

the Caudrey –Dodd –Gibbon (CDG) equation 27 

u t + 180 u 

2 u x + 30 u x u xx + 30 uu xxx + u xxxxx = 0 , (4) 

the Lax equation 28 

u t + 30 u 

2 u x + 20 u x u xx + 10 uu xxx + u xxxxx = 0 , (5) 

the Kaup–Kupershmidt (KK) equation 

Q3 
29 

u t + 20 u 

2 u x + 25 u x u xx + 10 uu xxx + u xxxxx = 0 , (6) 

the Ito equation 30 

u t + 2 u 

2 u x + 6 u x u xx + 3 uu xxx + u xxxxx = 0 . (7) 

Many authors have been studied these equations using dif- 31 

ferent approaches. There is still, however, a lot of room for 32 

extensions and improvements. in particular exact solutions, 33 

symmetries and conservation law. 34 

The main purpose of this paper is to investigate sym- 35 

metry and conservation law classification of the gener- 36 

alized KdV equation. We will show that the particular 37 

case n = 2 is special as it is the only case that admit a 38 

scaling symmetry. The paper is organized as follows. In 39 

Section 2 , all of the vector fields of Eq. (1) are constructed. 40 

In Section 3 , we consider the special case of n , that is 41 

n = 2 . In this case, the vector fields and some exact solu- 42 

tions are obtained. In Section 4 , we study the soliton solu- 43 

tions of the equation. In Section 5 , we find the conserva- 44 

tion laws. Finally, conclusions and some remarks are given 45 

in Section 5 . 46 

2. Group analysis of the generalized fifth-order KdV 47 

equation 48 

Consider a one-parameter Lie group of infinitesimal 49 

transformation: 50 

t ∗ = t + ετ (x, t, u ) + O (ε2 ) , 

x ∗ = x + εξ (x, t, u ) + O (ε2 ) , 

u 

∗ = u + εη(x, t, u ) + O (ε2 ) , (8) 

with a small parameter ε � 1, and the above group of 51 

transformations infinitesimal generator can read 52 

V = τ (x, t, u ) 
∂ 

∂t 
+ ξ (x, t, u ) 

∂ 

∂x 
+ η(x, t, u ) 

∂ 

∂u 

, (9) 

and we need to solve the coefficient functions τ ( x , t , u ), 53 

ξ ( x , t , u ), η( x , t , u ). 54 

Meanwhile, V must satisfy Lie’s symmetry condition 55 

pr (5) V (
) | 

=0 

= 0 , (10) 

where 56 


 = u t + αu 

2 u x + βu x u xx + γ uu xxx + u xxxxx . (11) 

57 

By using the fifth prolongation Pr (5) V to Eq. (1) , one can 58 

see that the coefficient functions satisfy the following 59 

equation: 60 

ηt + nαηu x + αu 

n ηx + βηx u xx + βηxx u x 

+ γ ηu xxx + γ ηxxx u + ηxxxxx = 0 , (12) 

where 61 

ηt = D t (η) − u x D t (ξ ) − u t D t (τ ) , 

ηx = D x (η) − u x D x (ξ ) − u t D x (τ ) , 

· · · (13) 

Here, D i are the total derivative operators defined by 62 

D i = 

∂ 

∂ x i 
+ u i 

∂ 

∂u 

+ u i j 

∂ 

∂ u j 

+ · · · i = 1 , 2 , (14) 

and (x 1 , x 2 ) = (t, x ) . 63 

On the basis of the Lie symmetry analysis method, one 64 

can get 65 

τ = c 1 , ξ = c 2 , η = 0 , (15) 

where c 1 and c 2 are arbitrary constants. So one can have 66 

the geometric vector fields 67 

V 1 = 

∂ 

∂x 
, V 2 = 

∂ 

∂t 
. (16) 

3. Classical, nonclassical, potential symmetry and exact 68 

solutions for n = 2 69 

In this section, we use the classical and nonclassical 70 

symmetry method to handle the fifth-order equation for 71 

n = 2 . 72 

3.1. Classical symmetry analysis 73 

On the basis of the Lie symmetry analysis method, one 74 

can get 75 

τ = 5 c 1 t + c 2 , ξ = c 1 x + c 3 , η = −2 c 1 u, (17) 

where c 1 , c 2 and c 3 are arbitrary constants. So one can 76 

have the geometric vector fields 77 

V 1 = 

∂ 

∂x 
, V 2 = 

∂ 

∂t 
, V 3 = x 

∂ 

∂x 
+ 5 t 

∂ 

∂t 
− 2 u 

∂ 

∂u 

. (18) 

3.2. Nonclassical symmetry analysis 78 

In the previous subsection, we used the classical sym- 79 

metry method to deal with the fifth order KdV equation. 80 

Next, we employ the nonclassical symmetry method [9,10] 81 

to study the fifth order KdV equation. The aim is that non- 82 

classical symmetries are much more numerous than clas- 83 

sical ones and maybe get more solutions of PDEs. In terms 84 

of the classical symmetry, the invariance surface condition 85 

should been added: 86 


1 = η − ξu x − τu t . (19) 

87 
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If the vector field (9) is a nonclassical symmetry of (1) , 88 

which should satisfy 89 

pr (5) V (
) | 

=0 , 
1 =0 

= 0 . (20) 

Consider the nature of the invariant surface condition 90 

(19) , without loss of generality, there are two cases to 91 

arise: (i) τ = 1 ; (ii) τ = 0 , ξ = 1 . More details see [9,10] and 92 

the references therein. In following, we will consider them 93 

respectively. 94 

1. τ = 1 . 95 

Then from the invariance surface condition (19) , one 96 

can get 97 

u t = η − ξu x . (21) 

After differentiating (21) with respect to x , and then re- 98 

placing u t by using η − ξu x , one can get 99 

ηt −ξt u x + ηu (η−ξu x ) + 2 αηuu x + αu 

2 (ηx + (ηu −ξx ) u x ) 

+ βu xx (ηx +(ηu −ξx ) u x )+βu x (ηxx +(2 ηxu −ξxx ) u x 

+(ηuu −2 ξxu u 

2 
x )+(ηu −2 ξx u xx ))+γ ηu xxx 

+ γ u [ ηxxx + 3 ηxxu u x + 3 ηxuu u 

2 
x + 3 ηxu u xx + ηuuu u 

3 
x + 3 ηuu u x u xx 

+ ηu u xxx −ξxxx u x −3 ξxx u xx −3 ξx u xxx ] + 5 ηxxxxu u x + 10 ηxxxu u xx 

+10 ηxxu u xxx + 3 ηxu u xxxx + ηu u xxxxx −ξxxxxx u x −5 ξxxxx u xx 

−10 ξxxx u xxx +10 ηuu u xx u xxx +ηxxxxx − 10 ξxx u xxxx −5 ξx u xxxxx 

+10 ηxxuu u 

2 
x +10 ηxxuuu u 

3 
x + 5 ηxuuuu u 

4 
x + 15 ηxuuu u 

2 
xx + ηuuuuu u 

5 
x 

+30 ηxuuu u 

2 
x u xx + 20 ηxuu u x u xxx + 30 ηxxuu u x u xx + 5 ηuu u x u xxxx 

+15 ηuuu u x u 

2 
xx +10 ηuuuu u 

3 
x u xx +10 ηuuu u 

2 
x u xxx = 0 . (22) 

Solving the overdetermined system of equations, leads to 100 

η = 

−2 u 

5 t + C 1 
, ξ = 

x + C 2 
5 t + C 1 

, (23) 

where C 1 and C 2 are arbitrary constants. Consequently, one 101 

can get the corresponding “nonclassical symmetry ”is 102 

V 4 = 

x + C 2 
5 t + C 1 

∂ 

∂x 
+ 

∂ 

∂t 
+ 

−2 u 

5 t + C 1 

∂ 

∂u 

. (24) 

It is cleat that, V 4 = V 3 + C 1 V 2 + C 2 V 1 , it is the classical sym- 103 

metry. Also, we can find the equation does not have non- 104 

classical symmetries. 105 

2. τ = 0 , ξ = 1 . 106 

Now, using the same approach as before, one can 107 

have 108 

η = u x . (25) 

Then, solving the overdetermined equations, one can get 109 

τ = 0 , ξ = 1 , η = 0 . (26) 

That is to say, in this case, we could not get supplementary 110 

symmetries, of non-classical type. This also means no new 111 

explicit solutions can be constructed in the case of τ = 0 , 112 

ξ = 1 . 113 

3.3. Potential symmetry analysis 114 

Suppose (1) can be written an a conservation law, 115 

D t T (x, t, u ) + D x X (x, t, u ) = 0 . (27) 

116 

The PDE system S(x, t, u, v ) = 0 given by 117 

v x = u, 

v t = −
(

1 

3 

αu 

3 + 

1 

2 

(β − γ ) u 

2 
x + γ uu xx + u xxxx 

)
. (28) 

After repeating previous steps, one can get the co- 118 

efficient functions τ (x, t, u, v ) , ξ (x, t, u, v ) , η(x, t, u, v ) and 119 

ψ(x, t, u, v ) are: 120 

τ = c 1 t + c 2 , ξ = 

c 1 
3 

x + c 4 , η = −2 c 1 
3 

u, ψ = −c 1 v + c 3 . 

(29) 

One can find out that this equation does not have potential 121 

symmetry. 122 

3.4. Symmetry reductions and group-invariant solutions for 123 

n = 2 124 

In the previous section, we use the classical and non- 125 

classical group method to deal with the fifth order KdV 126 

equation In this section, by using the optimal system, we 127 

give some group-invariant solutions. 128 

3.4.1. One-dimensional optimal system of subalgebras 129 

In order to get the optimal system, we applying the ad- 130 

joint transformations formula [1] given by 131 

Ad(exp(εV i )) V j = V j − ε[ V i , V j ] + 

1 

2 

ε2 [ V i , [ V i , V j ]] − · · ·
(30) 

where ε is a nonzero constant. Here [ V i , V j ] is the commu- 132 

tator for the Lie algebra given by 133 

[ V i , V j ] = V i V j − V j V i . (31) 

We can get an optimal system of one-dimensional sub- 134 

algebras: 135 

V 1 , V 2 + λV 1 , V 3 . (32) 

3.4.2. Symmetry reductions 136 

In the present subsection, we employ the optimal sys- 137 

tem of one-dimensional subalgebras to deal with (1) . and 138 

in the next subsection we will give some exact solutions of 139 

(1) . 140 

(1) V 1 . 141 

For the generator V 1 , one can get the group-invariant 142 

solution is u = f (ξ ) , and ξ = t is the group-invariant, 143 

in this case, one can get trivial solution u (x, t) = C, and 144 

C is a constant quantity. 145 

(2) V 2 + λV 1 . 146 

For the case of V 2 + λV 1 , we get the group-invariant so- 147 

lutions 148 

u = f (ξ ) , (33) 

where ξ = x − λt . Plugging (33) into (2) , one can get 149 

the following ODE: 150 

−λ f ′ + α f 2 f ′ + β f ′ f ′′ + γ f f ′′′ + f (5) = 0 . (34) 

151 
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In particular, if β = 2 γ , and each term is multiplied by 152 

f , and integral once, one can get 153 

−λ

2 

f 2 + 

1 

4 

α f 4 + γ f 2 f ′′ + f f (4) − f ′ f ′′′ 

+ 

1 

2 

( f ′′ ) 2 + k = 0 , (35) 

where k is an integration constant. 154 

(3) V 3 . 155 

In the case of the generator V 3 , we get 156 

u = t −
2 
5 f (ξ ) , ξ = xt −

1 
5 . (36) 

Substitution of (36) into (2) , one can lead to 157 

−2 

5 

f − 1 

5 

ξ f ′ + α f 2 f ′ + β f ′ f ′′ + γ f f ′′′ + f (5) = 0 . (37) 

3.5. Exact group-invariant solutions using power serious 158 

method 159 

Supposing that (34) has the following solutions 160 

f (ξ ) = 

∞ ∑ 

n =0 

c n ξ
n . (38) 

Substituting (38) into (36) , one can have 161 

120 c 5 + 

∞ ∑ 

n =1 

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) c n +5 ξ
n 

+ αc 2 0 c 1 + α
∞ ∑ 

n =1 

n ∑ 

k =0 

k ∑ 

j=0 

(n + 1 − k ) c j c k − j c n +1 −k ξ
n 

+2 βc 1 c 2 + β
∞ ∑ 

n =1 

n ∑ 

k =0 

(k + 1) 

× (n + 1 − k )(n + 2 − k ) c k +1 c n +2 −k ξ
n 

+6 γ c 0 c 3 + γ
∞ ∑ 

n =1 

n ∑ 

k =0 

(n + 1 − k )(n + 2 − k ) 

× (n + 3 − k ) c k c n +3 −k ξ
n 

−1 

5 

∞ ∑ 

n =1 

nc n ξ
n −

(2 

5 

c 0 + 

2 

5 

∞ ∑ 

n =1 

c n ξ
n 
)

= 0 . (39) 

Comparing coefficients for n = 0 in (39) , one yields 162 

c 5 = 

2 
5 

c 0 − αc 2 0 c 1 − 2 βc 1 c 2 − 6 γ c 0 c 3 

120 

. (40) 

For general case, if n ≥ 1, one can get 163 

c n +5 = − 1 

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 

×
( 

α
n ∑ 

k =0 

k ∑ 

j=0 

(n + 1 − k ) c j c k − j c n +1 −k 

+ β
n ∑ 

k =0 

(k + 1)(n + 1 − k )(n + 2 − k ) c k +1 c n +2 −k 

+ γ
n ∑ 

k =0 

(n + 1 − k )(n + 2 − k )(n + 3 − k ) c k c n +3 −k 

−1 

5 

nc n − 2 

5 

c n 

)
. (41) 

In this way, the power series solution of can be rewritten 164 

f (ξ ) = c 0 + c 1 ξ + c 2 ξ
2 + c 3 ξ

3 + c 4 ξ
4 + c 5 ξ

5 + 

∞ ∑ 

n =1 

c n +5 ξ
n +5 

= c 0 + c 1 ξ + c 2 ξ
2 + c 3 ξ

3 + c 4 ξ
4 

+ 

2 
5 

c 0 − αc 2 0 c 1 − 2 βc 1 c 2 − 6 γ c 0 c 3 

120 

ξ 5 

−
∞ ∑ 

n =1 

1 

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 

×
( 

α
n ∑ 

k =0 

k ∑ 

j=0 

(n + 1 − k ) c j c k − j c n +1 −k 

+ β
n ∑ 

k =0 

(k + 1)(n + 1 − k )(n + 2 − k ) c k +1 c n +2 −k 

+ γ
n ∑ 

k =0 

(n + 1 − k )(n + 2 − k )(n + 3 − k ) c k c n +3 −k 

−1 

5 

nc n − 2 

5 

c n 

)
ξ n +5 . (42) 

Therefore, one can get 165 

u (x, t) = 

[
c 0 + c 1 (xt −

1 
5 ) + c 2 (xt −

1 
5 ) 2 + c 3 (xt −

1 
5 ) 3 

+ c 4 (xt −
1 
5 ) 4 + 

∞ ∑ 

n =0 

c n +5 (xt −
1 
5 ) n +5 

]
(t −

2 
5 ) 

= 

[
c 0 + c 1 (xt −

1 
5 ) + c 2 (xt −

1 
5 ) 2 + c 3 (xt −

1 
5 ) 3 

+ c 4 (xt −
1 
5 ) 4 

−
∞ ∑ 

n =0 

1 

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) 

×
( 

α
n ∑ 

k =0 

k ∑ 

j=0 

(n + 1 − k ) c j c k − j c n +1 −k 

+ β
n ∑ 

k =0 

(k + 1)(n + 1 − k )(n + 2 − k ) c k +1 c n +2 −k 

+ γ
n ∑ 

k =0 

(n + 1 − k )(n + 2 − k )(n + 3 − k ) c k c n +3 −k 

−1 

5 

nc n − 2 

5 

c n 

)
(xt −

1 
5 ) n +5 

]
(t −

2 
5 ) , (43) 

here c i (i = 0 , 1 , 2 , 3 , 4) are arbitrary constants. 166 

Remark. The exact solution of (43) also can be fixed in 

Q4 
167 

similarly way. The details are omitted here. 168 

In addition, by using the Maple soft, one can get fol- 169 

lowing Jacobi function and Weierstrass elliptic function so- 170 

lutions: 171 
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u (x, t) = 

−6 C 2 3 SN 

(
−6 

(
2 βγ + β2 −

√ 

β4 +4 β3 γ +4 β2 γ 2 −40 αβ2 −12 α
)

C 3 
5 t 

α + C 3 x + C 2 , i 

)2 

β
(

12 γ 2 + 12 β γ + 6 β2 + 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
)

×
−6 γ 2 

(
2 βγ + β2 −

√ 

β4 +4 β3 γ +4 β2 γ 2 −40 αβ2 −12 α
)

α − 72 γ 2 + 120 βγ

β
(

12 γ 2 + 12 β γ + 6 β2 + 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
)

× −60 β2 − 60 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 αβ2 

β
(

12 γ 2 + 12 β γ + 6 β2 + 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
) . (44) 

u (x, t) = 

−6 C 2 3 SN 

(
−6 

(
2 βγ + β2 + 

√ 

β4 +4 β3 γ +4 β2 γ 2 −40 αβ2 −12 α
)

C 3 
5 t 

α + C 3 x + C 2 , i 

)2 

β
(

12 γ 2 + 12 β γ + 6 β2 + 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
)

×
−6 γ 2 

(
2 βγ + β2 + 

√ 

β4 +4 β3 γ +4 β2 γ 2 −40 αβ2 −12 α
)

α − 72 γ 2 + 120 βγ

β
(

12 γ 2 + 12 β γ + 6 β2 + 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
)

× −60 β2 + 60 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 αβ2 

β
(

12 γ 2 + 12 βγ + 6 β2 − 6 

√ 

β4 + 4 β3 γ + 4 β2 γ 2 − 40 α β2 − 120 α
) . (45) 

172 

u (x, t) = −3 ℘ 

(
1 

2 

C 4 
5 C 2 ( −3 M + 36 ) t + C 4 x + C 3 , C 2 , C 1 

)
×
(

2 γ + β−
√ 

β2 + 4 βγ + 4 γ 2 − 40 α
)

C 4 
2 α−1 . 

(46) 

173 

u (x, t) = −3 ℘ 

(
1 

2 

C 4 
5 C 2 ( −3 N + 36 ) t + C 4 x + C 3 , C 2 , C 1 

)
×
(

2 γ + β+ 

√ 

β2 + 4 βγ + 4 γ 2 −40 α
)

C 4 
2 α−1 . 

(47) 

4. Solitons solutions 174 

This section will obtain solitary wave solutions to the 175 

model equation given by (1) . The method of undetermined 176 

coefficients will be adopted to retrieve these solitons. In 177 

this case we rewrite Eq. (1) as follows: 178 

u t + αu 

n u x + βu x u xx + γ uu xxx + δu xxxxx = 0 . (48) 

There are four types of solutions that are going to be ex- 179 

tracted for (48) with the aid of the method of undeter- 180 

mined coefficients. They are in the next few subsections: 181 

4.1. Solitary waves 182 

In order to obtain solitary waves, the starting hypothe- 183 

sis is: 184 

u (x, t) = A sech 

p τ (49) 

with 185 

τ = B (x − v t) (50) 

where A is the amplitude of the soliton, p > 0 is a pa- 186 

rameter that will be obtained with the aid of the balanc- 187 

ing principle, B represents the inverse width of the soli- 188 

ton while v is the speed. By substituting (49) into (48) one 189 

obtain 190 

(v − p 4 δB 

4 ) sech 

p+1 τ − p 2 (β + γ ) AB 

2 sech 

2 p+1 τ

−αA 

n sech 

(n +1) p+1 τ

+(1 + p)(2 γ + p(β + γ )) AB 

2 sech 

2 p+3 τ

+2(1 + p)(2 + p)[2 + p(2 + p)] δB 

4 sech 

p+3 τ

−(1 + p)(2 + p)(3 + p)(4 + p) δB 

4 sech 

p+5 τ = 0 (51) 

The balancing principle allows to equate the exponents 191 

(n + 1) p + 1 with p + 5 from which 192 

p = 

4 

n 

. (52) 

Notice also that the same principle allows to equate 2 p + 3 193 

with p + 5 , and 2 p + 1 with p + 3 , both situations leading 194 

to 195 

p = 2 (53) 

Thus, from (52) and (53) we have 196 

n = 2 . (54) 

Consequently, the system (51) collapses into 197 

(v − 16 δB 

4 ) sech 

3 τ − 4[(β + γ ) A − 60 δB 

2 ] B 

2 sech 

5 τ

−[360 δB 

4 + αA 

2 − 6(2 γ + β) AB 

2 ] sech 

7 τ = 0 . (55) 

After equating the coefficients of the linearly independent 198 

functions sech 

j τ for j = 3 , 5 , 7 to zero one get 199 

v = 16 δB 

4 , (56) 
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200 

A = 

60 δB 

2 

β + γ
(57) 

constrained by 201 

β + γ � = 0 , (58) 

and the identity 202 

(2 γ + β)(γ + β) − (β + γ ) 2 − 10 αδ = 0 . (59) 

Therefore, the solitary wave solution to (48) is given by 203 

u (x, t) = A sech 

2 
[ B (x − v t)] (60) 

where the speed v is given in (56) , while the amplitude A 204 

is provided in (57) . For the solution to exist the identity 205 

(59) has to be satisfied along with the condition (58) . 206 

4.2. Shock waves 207 

In order to solve the generalized fifth order KdV Eq. 208 

(48) for shock wave the starting hypothesis is taken to be 209 

210 

u (x, t) = A tanh 

p τ (61) 

with τ as defined in (50) , A and B are free parameters, and 211 

p > 0 is a key parameter to be determined. Substituting 212 

Eq. (49) into Eq. (48) gives in a simplified form 213 

[ v − 2 p 2 (5 + 3 p 2 ) δB 

4 ] tanh 

p−1 τ − αA 

n tanh 

(n +1) p−1 τ

+4(p − 1)(p − 2)[2 + p(p − 2)] δB 

4 tanh 

p−3 τ

−(p − 1)(p − 2)(p − 3)(p − 4) δB 

4 tanh 

p−5 τ

+2 p 2 (β + γ ) AB 

2 tanh 

2 p−1 τ + (p − 1) 

×[2 γ − p(β + γ )] AB 

2 tanh 

2 p−3 τ

+4(p + 1)(p + 2)[2 + p(2 + p)] δB 

4 tanh 

p+1 τ

−(p + 1)(p + 2)(p + 3)(p + 4) δB 

4 tanh 

p+3 τ

−(p + 1)[2 γ + p(β + γ )] AB 

2 tanh 

2 p+1 τ = 0 . (62) 

By the balancing principle, equating the exponents (n + 214 

1) p − 1 and p + 3 leads to (52) , but also it is possible 215 

to equate 2 p + 1 with p + 3 resulting in (53) and conse- 216 

quently one get (54) . In view of this values of p and n , the 217 

Eq. (62) can be rewritten as 218 

[ v − 136 δB 

4 − 2 βAB 

2 ] tanh τ + 8[(β + γ ) A 

+ 60 δB 

2 ] B 

2 tanh 

3 τ − [6(β + 2 γ ) AB 

2 

+ 360 δB 

4 + αA 

2 ] tanh 

5 τ = 0 . (63) 

Equating to zero the coefficients of the linearly indepen- 219 

dent functions tanh 

j τ for j = 1 , 3 , 5 lead us to 220 

v = 2(βA + 68 δB 

2 ) B 

2 , (64) 

and the amplitude becomes 221 

A = − 60 δB 

2 

β + γ
. (65) 

along with the condition (58) . In addition, the identity 222 

(β + γ ) 2 − (2 γ + β)(γ + β) + 10 αδ = 0 . (66) 

has to be satisfied in order for the shock waves to exist. 223 

Therefore, the shock wave to the generalized fifth order 224 

KdV Eq. (48) is given by 225 

u (x, t) = A tanh 

2 
[ B (x − v t)] (67) 

where the amplitude is given in (65) while the speed turns 226 

to be (64) along with the corresponding conditions. In ad- 227 

dition, the condition (66) has to be satisfied. 228 

4.3. Singular solitary waves (Type-I) 229 

For type-I singular solitary wave solution to Eq. (48) the 230 

starting hypothesis is 231 

u (x, t) = A csch 

p τ (68) 

where the parameter p > 0 will be determined with the 232 

help of the balancing principle, A and B are free parame- 233 

ters, while τ retain the same meaning as in (50) . The sub- 234 

stitution of (68) into (48) leads to 235 

(v − p 4 δB 

4 ) csch 

p+1 τ − p 2 (β + γ ) AB 

2 csch 

2 p+1 τ

−αA 

n csch 

(n +1) p+1 τ − 2(1 + p)(2 + p) 

×(2 + p(2 + p)) δB 

4 csch 

p+3 τ

−(1 + p)[2 γ + p(β + γ )] AB 

2 csch 

2 p+3 τ

−(1 + p)(2 + p)(3 + p)(4 + p) δB 

4 csch 

p+5 τ = 0 . (69) 

As in Eq. (51) , it is possible to equate (n + 1) p + 1 with 236 

p + 5 , 2 p + 3 with p + 5 , and also 2 p + 1 with p + 3 , thus 237 

leading to (53) , and consequently (54) . As a consequence, 238 

the Eq. (69) becomes 239 

(v − 16 δB 

4 ) csch 

3 τ − 4[(β + γ ) A + 60 δB 

2 ] B 

2 csch 

5 τ

−[360 δB 

4 + αA 

2 + 6(2 γ + β) AB 

2 ] csch 

7 τ = 0 . (70) 

After equating the coefficients of the linearly independent 240 

functions csch 

j τ for j = 3 , 5 , 7 to zero one get the wave 241 

speed as in (56) , the amplitude as in (65) , and the identity 242 

turns to be the same as in (66) . Thus, the type-I singular 243 

solitary wave solution to the generalized KdV Eq. (48) is 244 

given by 245 

u (x, t) = A csch 

2 
[ B (x − v t)] (71) 

where the soliton speed and amplitude are given in (56) 246 

and (65) respectively, while the identity (66) has to be 247 

satisfied in order to preserve the existence of the solitary 248 

wave. 249 

4.4. Singular solitary waves (Type-II) 250 

To obtain type-II singular solitary wave solutions to Eq. 251 

(48) the starting Ansatz is 252 

u (x, t) = A coth 

p τ (72) 

where the meaning of A , p and τ are as in the previous 253 

subsections. By inserting (72) into the fifth order KdV Eq. 254 

(48) one get 255 

[ v − 2 p 2 (5 + 3 p 2 ) δB 

4 ] coth 

p−1 τ − αA 

n coth 

(n +1) p−1 τ

+4(p − 1)(p − 2)[2 + p(p − 2)] δB 

4 coth 

p−3 τ

−(p − 1)(p − 2)(p − 3)(p − 4) δB 

4 coth 

p−5 τ

+2 p 2 (β + γ ) AB 

2 coth 

2 p−1 τ + (p − 1) 

×[2 γ − p(β + γ )] AB 

2 coth 

2 p−3 τ

+4(p + 1)(p + 2)[2 + p(2 + p)] δB 

4 coth 

p+1 τ

−(p + 1)(p + 2)(p + 3)(p + 4) δB 

4 coth 

p+3 τ

−(p + 1)[2 γ + p(β + γ )] AB 

2 coth 

2 p+1 τ = 0 . (73) 
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The balancing principle leads to (53) and (54) . Both values 256 

reduce the Eq. (73) into 257 

[ v − 136 δB 

4 − 2 βAB 

2 ] coth τ + 8[(β + γ ) A 

+ 60 δB 

2 ] B 

2 coth 

3 τ − [6(β + 2 γ ) AB 

2 

+ 360 δB 

4 + αA 

2 ] coth 

5 τ = 0 . (74) 

and consequently, the results (64) –(66) reappear. Finally, Q5 
258 

the type-II singular solitary wave solution to the general- 259 

ized fifth order KdV Eq. (48) is given by 260 

u (x, t) = A coth 

2 
[ B (x − v t)] (75) 

where the amplitude is provided in (65) while the speed 261 

turns to be (64) along with the corresponding conditions. 262 

5. Conservation laws 263 

In this section, we employ the multipliers method [3–264 

5] to deal with the conservation law. Firstly, we introduces 265 

some basic definitions and concepts. 266 

From what has been described above, suppose the con- 267 

servation law is given by D x T 
x + D t T 

t = on the solutions of 268 

(1) . 269 

In Section 2 , we got the Lie point symmetry generators 270 

X 1 = ∂ t and X 2 = ∂ x . For the case n = 2 , we obtain the ad- 271 

ditional scaling symmetry X 3 = x∂ x + 5 t∂ t − 2 u∂ u . 272 

In general, we have the only conserved vector based on 273 

the multiplier Q = 1 given by 274 

T x = 

1 

n + 1 

αu 

n +1 + 

1 

2 

(β − γ ) u x 
2 + γ uu xx + u xxxx , 

T t = u. (76) 

In particular, if β = 2 γ , one can get the multiplier Q = u, 275 

and get the conserved vector 276 

T x = 

1 

n + 2 

αu 

n +2 + γ u 

2 u xx + uu xxxx − u x u xxx + 

1 

2 

u 

2 
xx , 

T t = 

1 

2 

u 

2 . (77) 

For n = 2 , subject to the condition 277 

10 α + 2 β2 − 7 βγ + 3 γ 2 = 0 , (78) 

we obtain an additional, second order, multiplier Q = 278 
1 

10 ((2 β − γ ) u 2 + 10 u xx ) leading to the nontrivial conserved 279 

flow 280 

T x = 

1 

200 

(α(8 β − 4 γ ) u 

5 + 20(2 β − γ ) γ u 

3 u xx 

−20 u (5 u xt − 2((β + 2 γ ) u xx 
2 + (−2 β + γ ) u x u xxx )) 

−5 u 

2 ((10 α + 2 β2 − 7 βγ + 3 γ 2 ) u x 
2 

+4(−2 β + γ ) u xxxx ) + 20(5 u t u x + 2(2 β − γ ) u x 
2 u xx 

−5(u xxx 
2 − 2 u xx u xxxx ))) , 

T t = 

1 

30 

((2 β − γ ) u 

3 + 15 uu xx ) . (79) 

We note that the action of X 3 on Q satisfies X 3 Q = −4 Q . 281 

For any solution u ( x , t ), if u and its derivatives converge to 282 

x −→ ±∞ , 
∫ ∞ 

−∞ 

T t dx provide conserved quantities. 283 

From the solitary wave solution derived in the previ- 284 

ous section, the conserved quantities, with δ = 1 , are as 285 

follows: 286 

I 1 = 

∫ ∞ 

−∞ 

T t dx = 

∫ ∞ 

−∞ 

udx = 

2 A 

B 

(80) 

287 

I 2 = 

∫ ∞ 

−∞ 

T t d x = 

1 

2 

∫ ∞ 

−∞ 

u 

2 d x = 

2 A 

2 

3 B 

(81) 

288 

I 3 = 

∫ ∞ 

−∞ 

T t d x = 

1 

30 

∫ ∞ 

−∞ 

{
( 2 β − γ ) u 

3 + 15 uu xx 

}
d x 

= 

8 A 

2 

225 B 

{ (2 β − γ ) A + 15 B 

2 } (82) 

Remark. It does not exist other n th order multiplier, in 289 

other words, it only exist, for the general case, second or- 290 

der multiplier. 291 

6. Conclusion 292 

In the present paper, using the group methods, and the 293 

multiplier approach, the generalized fifth-order KdV equa- 294 

tion is studied. Furthermore, we derive the corresponding 295 

Lie algebra and the similarity reductions of special case of 296 

generalized fifth-order KdV equation. Also, we found that 297 

the analyzed model does not admit nonclassical type sym- 298 

metries for n = 2 . In addition, on the basis of symmetries, 299 

the optimal system is constructed, based on the optimal 300 

system, some exact solutions are presented. Meanwhile, 301 

some soliton solutions are presented. Finally, conservations 302 

laws are derived. These results are important for the un- 303 

derstanding of nonlinear interaction and behaviors of com- 304 

plex system in some piratical physical problems. 305 
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