Kwantlen Polytechnic University KORA: Kwantlen Open Resource Access All Faculty Scholarship Faculty Scholarship 2015 Symmetry Analysis and Conservation Laws for the Class of Time-Fractional Nonlinear Dispersive Equation Kamran Fakhar Kwantlen Polytechnic University Gangwei Wang A. H. Kara Follow this and additional works at: http://kora.kpu.ca/facultypub Part of the Mathematics Commons, and the Non-linear Dynamics Commons Original Publication Citation Wang, G., Kara, A.H. & Fakhar, K. (2015). Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dynamics, May 2015. DOI 10.1007/s11071-015-2156-4 This Article is brought to you for free and open access by the Faculty Scholarship at KORA: Kwantlen Open Resource Access. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of KORA: Kwantlen Open Resource Access. For more information, please contact kora@kpu.ca. Nonlinear Dyn DOI 10.1007/s11071-015-2156-4 of ORIGINAL PAPER pro Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation Received: 31 December 2014 / Accepted: 10 May 2015 © Springer Science+Business Media Dordrecht 2015 2 3 1 4 2 3 6 5 7 Abstract In this paper, we derive the complete algebra of Lie point symmetries for the class of ((( time fractionaltime-fractionalnonlinear dispersive equa((( tion. By means of the classical Lie symmetry method, the associated vector fields are obtained which in turn are utilized for the reduction of the equation. In particular, the conservation laws of the equation are obtained. 9 Keywords Time-fractional nonlinear dispersive equation · Lie symmetry method · Conservation laws 10 1 Introduction 11 12 Differential equations play an important and central role in many fields. It is well known that Lie theory of unc 8 symmetry group provides a systemic, general and effi- 13 cient method to deal with differential equations. This 14 theory is mainly used for the construction of similarity 15 reductions, group invariant solutions and the conserva- 16 tions laws. In general, Lie symmetries can be used to 17 reduce the order as well number of independent vari- 18 ables of original equation ( system of equations ) . For 19 further details, readers are referred to [1–11] . 20 (( Unlike the case of ( 21 integral orderintegral-orderpartial ((( ( (( differential equations ( PDEs ) , symmetries of ( 22 fractional ((( orderfractio orderpartial differential equations ( FPDEs ) have not 23 been investigated extensively. The study of FPDEs 24 through symmetries is quite interesting and signifi- 25   cant [12–28] . Therefore, in our present  studystudy,we 26 investigate the symmetries of FPDEs and thereby do the 27 analysis. We successfully obtain the reduction in inde- 28 pendent and dependent variables. Moreover, we look 29 into the key issue of whether we can identify the FPDEs 30 from which the Lie point symmetries are inherited. 31 In this paper, we will investigate the class of 32 ((( time fractionaltime-fractionalnonlinear dispersive equa- 33 (( ( tion 34    1  a α m b a b u (u u u u t + ε(u )x + = 0, (1) 35 xx x b   where u(x, t) represents the wave  profileprofile,while 36 a, b, ε and m are constants. Some special cases of ( 37 1 ) have been used to describe physical situations in 38 various fields. If α = 1, a = 0, one can get the gen- 39 eralization of the KdV equation. In the special case if 40 m = 2, a = 0, b = 1, Eq. ( 1 ) reduces to the classical 41 KdV equation, while m = 3, a = 0, b = 1, Eq. ( 1 42 orre 1 cted Gangwei Wang · A. H. Kara · K. Fakhar G. Wang (B) School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, Republic of China e-mail: pukai1121@163.com; wanggangwei@bit.edu.cn G. Wang · A. H. Kara · K. Fakhar Department of Mathematics, University of British Columbia, Vancouver V6T 1Z2, Canada A. H. Kara School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg Wits 2050, South Africa K. Fakhar Department of Mathematics, Faculty of Science and Horticulture, Kwantlen Polytechnic University, Surrey, BC V3W 2MB, Canada 123 Journal: 11071 MS: 2156 TYPESET DISK LE CP Disp.:2015/5/15 Pages: 7 Layout: Medium G. Wang et al. 48 49 50 51 52 53 54 55 56 dt ∗ dx ∗ |ε=0 , ξ(x, t, u) = |ε=0 , dε dε ∗ du |ε=0 . η(x, t, u) = (5) dε On the basis of the infinitesimal invariance criterion, one can get τ (x, t, u) = pr (α,3) V ( 1 )| 80 81 82 83 = 0, (6)     b ua ub u a . where 1 = u αt + ε(u m )x + b1  (u xx x The prolongation operator pr (α,3) V is pr 2 Lie symmetry analysis of the class of the (((( time fractionaltime-fractionalnonlinear (( ( dispersive equation 79 of 47 Here, pro 45 46 ) becomes the famous mKdV equation. Further more descriptions of ( 1 ) and its applications can be found in [29–32] and references therein. Sect. 2 ,  The paper is divided as follows. In  Sec. some definitions and properties of Lie group method   to  analysisanalyzethe FPDEs are given. Moreover, the infinitesimal operators of the  Lie-pointLie  pointsymmetries  admitted by Eq. ( 1 ) are also constructed. In  Sec.Sect. 3 , the conservation laws of the equation are obtained. The main results of the paper are summarized and discussed in the last section. (α,3) 1 =0  V = V + ηα0 ∂∂tα u + η x ∂u x + η x x ∂u x x + η x x x ∂u x x x , 84 85 86 87 (7) 88 where cted 43 44 89 η = ηx + (ηu − ξx )u x − τx u t − ξu u 2x − τu u x u t , η x x = ηx x + (2ηxu − ξx x )u x − τx x u t x 58 59 60 61 62 63 64 In this section, we employ Lie symmetry method to deal with the fractional nonlinear dispersive equation. We first briefly recall the concept of fractional derivative ( [33–36] and( references therein ) . In particular, the ((( Riemann-LiouvilleRiemann–Liouvillefractional deriv((( ( ative is defined by Dtα f (t)  ∂nu = ( ((( , ( α = n, α = n ∈ N, ∂t n (  t u(θ,x) 1 ∂n Γ (n−α) ∂t n 0 (t−θ)α+1−n dθ, n −1 < α < n, n ∈ N , 68 69 70 71 72 73 74 75 76 77 78 − 3ξu u x x u x − τu u x x u t − 2τu u xt u x , xxx ut  = ηx x x + (3ηx xu − ξx x x )u x − τx x x + 3u t + 3(ηxuu−ξx xu )u 2x − 3τx xu u x u t + u x u t where Γ (z) is the Euler gamma function. Assume that ( 1 ) is invariant under the one parameter Lie group of point transformations    2  t ∗ = t + ετ (x, t, u) O ε2 , +O(ε    2  x ∗ = x + εξ(x, t, u) + O ε2 , +O(ε    2  u ∗ = u + εη(x, t, u) + O ε2 , +O(ε   ∂ α ū ∂ α u (3) = α + εηα0 (x, t, u) + O ε2 , α ∂ t¯ ∂t   ∂ ū ∂u  2  = + εη x (x, t, u) + O ε2 , +O(ε ∂ x̄ ∂ x   ∂ 2 ū ∂ 2 u  2  = 2 + εη x x (x, t, u) + O ε2 , +O(ε 2 ∂ x̄ ∂x   ∂ 3 ū ∂ 3 u xxx 2 = + εη (x, t, u) +O(ε ), + O ε2 ,  ∂ x̄ 3 ∂ x 3 where ε is the group parameter, and its associated Lie algebra is spanned by the following vector fields ∂ ∂ ∂ + η(x, t, u) . (4) V = τ (x, t, u) + ξ(x, t, u) ∂t ∂x ∂u TYPESET DISK LE 90 − 3τx x u xt − 3τxuu u 2x u t +3(ηuu −3ξxu )u x u x x − 3τxu u x x u t − 6τxu u xt u x −3τx u x xt + + (ηu − 3ξx )u x x x − ξx x x u 4x  − 6ξuu u x x u 2x − 3τuu u 2x u t x −τuuu ut  − 3u 3x u t u 3x  − 3ξu u 2x x − 3τu u x xt u x − 3τu u xt u x x −3 − 3τuu u t u x u x x −4ξu u x u x x x − τu u t u x x x . In particular, ηα0 = ∂αη ∂t α 91 + (ηu − α Dt (τ )) ∞ +μ + n=1 × Dtα−n (u)− ∂αu ∂t α −u ∂αη ∞ n=1 a Dtn (ξ )Dtα−n (u x ), n where μ =μ =  u 92 ∂t α  a ∂ α ηu a − D n+1 (τ ) n ∂t α n+1 t 93 (9) 94 95 ∞ n m k−1 a n n m k 1 t n−α 96 r k! Γ (n + 1 − α) n=2 m=2 k=2 r =0 ∂m ∂ n−m+k η × [−u]r m [u k−r ] n−m k , ∂t ∂t ∂u 123 Journal: 11071 MS: 2156 (8) + (ηuuu − 3ξxuu ) u 3x + 3(ηxu − ξx x )u x x (2) unc 67 − τuu u 2x u t + (ηu − 2ξx )u x x − 2τx u xt η 65 66 + (ηuu − 2ξxu )u 2x − 2τxu u x u t −ξuu −u 3x u 3x orre 57 CP Disp.:2015/5/15 Pages: 7 Layout: Medium (10) 97 Time-fractional nonlinear dispersive equation 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 of 100 here c1 and c2 are arbitrary constants. Thus, the corresponding vector fields are τ (x, t, u)|t=0 = 0. (11) c1 (a + b − 3m + 2) t ∂ (( V = Compared with the Lie symmetry method to ( integral orderintegral((( α ∂t  ∂  ∂ orderdifferential equations, it is can be easily seen that + 2c1 u . (16) + c1 (a + b − m) x + c2 constraint condition ( 11 ) and formula ( 9 ) are critical ∂x ∂u or to FPDEs. ((( ∂ (a + b − 3m + 2) t ∂ Now, we will study the class of ( time fractionaltime(( V1 = , V2 = fractionalnonlinear dispersive equation using above ∂x α ∂t  ∂ ∂ Lie symmetry group theory. First, one can get the fol+ 2u , (17) + (a + b − m)x lowing assertion ∂x ∂u which complete the proof.   Theorem 1 The symmetry group of the equation is In particular, for the symmetry V2 , we have the charspanned by the following vector fields acteristic equation ∂ (a + b − 3m + 2) t ∂ dx αdt du , V2 = V1 = , (18) = = ∂x α ∂t 2u (a + b − m) x (a + b − 3m + 2) t ∂ ∂ which leads to the following similarity variable and the + 2u . (12) + ((a + b − m)x) ∂x ∂u similarity transformation α(a+b−m) 2α Proof By assuming that Eq. ( 1 ) is invariant under the ξ = xt − a+b−3m+2 , u = t a+b−3m+2 g(ξ ), (19) transformation group ( 3 ) , one can get the symmetry    as  requiredrequired. equation as follows pro 99 and additional constraint condition is cted 98 + η x x x u a+b−1 + εm(m − 1)ηu m−2 u x 117 + εmη x u m−1 + (a +3b−3)(a +b−2)ηu a+b−3 u x u x x 118 + (a + 3b − 3)η u 119 + (a + 3b − 3)η x x u a+b−2 u x 120 121 orre 116 uxx + (b − 1)(a + b − 2)(a + b − 3)ηu a+b−4 u 3x + 3(b − 1)(a + b − 2)η x u a+b−3 u 2x = 0. (13) 124 ξu = τu = ξt = ξx x = τx = ηuu = 0, 125 (τt α − 3ξx )u + (a + b − 1)η = 0, 126 (τt α + ηu − 3ξx )u + (a + b − 2)η = 0, 127 (τt α + 2ηu − 3ξx )u + (a + b − 3)η = 0, 129 130 unc 123 128 1−α+ 2α a+b−3m+2 P a+b−3m+2 ,α α(a+b−m) Substituting ( 8 ) -–(  11 ) into ( 13 ) , and letting all of the powers of derivatives of u to zero, one can have 122 (τt α − ξx )u + (m − 1)η = 0, a n a ∂ (ηu ) − D n+1 (τ ) = 0, n t n+1 t for n = 1, 2,  · · ·. . . 131 By solving these equations, we have 132 ξ = c1 (a + b−m)x +c2 , τ = 133 η = 2c1 u, (14) c1 (a +b−3m +2) t , α (15) g(ξ ) TYPESET DISK 137 138 139 140 141 142 143 144 145 146 147 148 152 + εmg m−1 gξ + (b − 1)(a + b − 2)g a+b−3 gξ3 153 + (a + b − 3)g 154 a+b−2 gξ ξ gξ + g a+b−1 gξ ξ ξ = 0, (20) ( ( ( with the ( Erdelyi-KoberErdelyi–Koberfractional differ(( ential operator Pβτ,α of order [33] (Pβτ,α g):= n−1  j=0 τ+j− 1 d ξ β dξ   K βτ +α,n−α gg  (ξ ), (21)  [α] + 1, α ∈ / N, (22) α α ∈ N, where   K βτ,α gg  (ξ ) ⎧ ⎨ 1  ∞ (u − 1)α−1 u −(τ +α) g(ξ u β1 )du, α > 0, := Γ (α) 1 ⎩ g(ξ ), α = 0, n= LE 155 156 157 158 159 160 161 162 163 (23) 164 is the Erdé lyi–Kober fractional integral operator. 123 Journal: 11071 MS: 2156 136 Theorem 2 The transformation ( 19 ) reduces ( 1 ) to 149 ((( the following nonlinear ODE of ( fractional ((( orderfractional-150 order 151 ηα0 + (a + b − 1)ηu a+b−2 u x x x x a+b−2 134 135 CP Disp.:2015/5/15 Pages: 7 Layout: Medium 165 G. Wang et al. 169 170 ∂αu ∂t α ==  ∂n 1 ∂t n Γ (n − α)  t 0 174 1+ = ∂t n 2α t n−α+ a+b−3m+2 K 2α 1+ a+b−3m+2 ,n−α a+b−3m+2 α(a+b−m)  g (ξ ) . (25) 176 α(a+b−m) 179 180 By using the relation ξ = xt − a+b−3m+2 , Eq. ( 25 ) further simplifies to t α(a+b−m) ∂ α(a +b−m) t − a+b−3m+2 −1 φ  (ξ ) φ(ξ ) = t x − ∂t a +b−3m +2 α(a + b − m) d ξ φ(ξ ). (26) =− a + b − 3m + 2 dξ 181 Thus, one can get 182 ∂ n n−α+ 2α a+b−3m+2 t ∂t n 183 2α 1+ a+b−3m+2 ,n−α K a+b−3m+2 α(a+b−m) 2α a+b−3m+2 × K a+b−3m+2 ,n−α α(a+b−m) 185 186 187  g (ξ )  gg  (ξ ) ∂ n−1 n−α+ 2α −1 a+b−3m+2 t (n − α ∂t n−1 α(a + b − m) d 2α − ξ + a + b − 3m + 2 a + b − 3m + 2 dξ  2α 1+ a+b−3m+2 ,n−α × K a+b−3m+2 g (ξ ) . = α(a+b−m) (27) 2α = · · · = t n−α+ a+b−3m+2 + n−1 j=0 TYPESET DISK LE  191 192 193 194 (1 − α 195 α(a + b − m) d 2α +j− ξ a + b − 3m + 2 a + b − 3m + 2 dξ 1+ 2α a+b−3m+2 × K a+b−3m+2 ,n−α α(a+b−m) g (ξ ). 196 (28) So we have 2α 2α ∂αu 1−α+ a+b−3m+2 ,α −α+ a+b−3m+2 P = t g (ξ ). (29) a+b−3m+2 α ∂t α(a+b−m) Hence, it is easily found that ( 1 ) reduces into the ( (( following ( fractional ((( orderfractional-orderODE P 2α 1−α+ a+b−3m+2 ,α a+b−3m+2 α(a+b−m) g(ξ ) + εmg m−1 gξ + (a + b − 3)g a+b−2 gξ ξ gξ + g 198 199 200 201 203 a+b−1 gξ ξ ξ = 0. 204 (30) 205   206 207 In this section, we study the conservation laws of the class of time-fractional nonlinear dispersive equa(((( tion. The ( Riemann-LiouvilleRiemann–Liouvilleleft((( sided time-fractional derivative will be used as α n n−α u), (31) 0 D t u = D t (0 I t    in Eq. ( 1 ) . HereHere,Dt is the operator of differentiation with respect to t, n = [α] + 1, and 0 Itn−α u is the left-sided time-fractional integral of order n − α defined by [25]  t u(θ, x) 1 (0 Itn−α u)(x, t) = dθ, Γ (n − α) 0 (t − θ )1−n+α (32) where Γ (z) is the Gamma function. CP Disp.:2015/5/15 Pages: 7 Layout: Medium 197 202 + (b − 1)(a + b − 2)g a+b−3 gξ3 123 Journal: 11071 MS: 2156 190 gg)(ξ )  This completes the proof. 3 Conservation laws ∂ n−1 ∂ n−α+ 2α a+b−3m+2 t = n−1 ∂t ∂t 1+ 184 ,n−α α(a+b−m) orre 178 = unc 177 189 ∂ n−1 n−α+ 2α −1 a+b−3m+2 t (n − α ∂t n−1 α(a + b − m) d 2α − ξ + a + b − 3m + 2 a + b − 3m + 2 dξ  2α 1+ a+b−3m+2 ,n−α × K a+b−3m+2 g (ξ ) (24)  ∞ ∂αu 1 ∂ n n−α+ 2α a+b−3m+2 = (v−1)n−α−1 t ∂t α ∂t n Γ (n−α) 1    2α α(a+b−m) − n−α+ a+b−3m+2 +1 ×v g(ξ v a+b−3m+2 )dv 175 2α α(a+b−m) Under the assumption v = st , Eq. ( 24 ) reduces ∂n ∂ n−1 ∂ n−α+ 2α a+b−3m+2 t ∂t n−1 ∂t a+b−3m+2 × K a+b−3m+2  α(a+b−m) 2α 173 (t − s)n−α−1 × s a+b−3m+2 g(xs − a+b−3m+2 )ds . 171 172 = of 168 188 pro 167  RepeatRepeatingthe previous step, one has   n 2α 2α ∂ 1+ a+b−3m+2 ,n−α n−α+ a+b−3m+2 t K g (ξ ) a+b−3m+2 ∂t n α(a+b−m) Proof We first let n − 1 < α < n, n =(1, 2, 3, . . .. ((( Then, in light of the ( Riemann-LiouvilleRiemann– ((( Liouvillefractional derivative and the similarity transformation, we get cted 166 208 209 210 211 212 213 214 215 216 217 218 219 Time-fractional nonlinear dispersive equation 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 W = η − τ ut − ξ u x . of (41) 258 ((( (33) ((( ( For the ( 259 case Riemann-Liouvillecase, Riemann–Liouvilletime( ( where C t = C t (t, x, u,  .... . .), C x = C x (t, x,  u, ...u, . . .). fractional derivative is used in Eq. ( 1 ) , the operator 260 Eq. ( 33 ) is called a conservation law for Eq. ( 1 ) . N t is given by [25,26] 261 A formal Lagrangian for ( 1 ) can be introduced as      m 1  a n−1 α b a u (u u u b (34) . L = v(x, t) u t + ε u x + ∂ t xx x b  N = τl + (−1)k 0 Dtα−1−k (W )Dtk 262 α ∂ D 0 t u    k=0 HereHere,v(x, t) is a new dependent variable. Con∂ sidering the formal Lagrangian, an action integral is , (42) 263 − (−1)n J W, Dtn given by ∂ 0 Dtα u  T  L x, t, u, v, Dtα u, u x · · · dxdt. (35) where J is the integral [25,26] 264 Ω 0 ( ( ( ( ( The ( Euler-LagrangeEuler–Lagrangeoperator is defined (  t T by [25,26] f (τ, x)g(μ, x) 1 J ( f, g) = dμdt. 265 ∂ δ ∂ ∂ ∂ Γ (n − α) (μ − τ )α+1−n 0 t = + (Dtα )∗ − Dx + Dx2 α δu ∂u ∂ Dt u ∂u x ∂u x x (43) 266 3 ∂ − Dx , (36) ∂u x x x The operator N x is defined by 267 where (Dtα )∗ is the adjoint operator of (Dtα ). (((( Note that Eq. ( 1 ) with the ( Riemann-LiouvilleRiemann– ((( ∂ ∂ ∂ N x = ξl + W − Dx + Dx2 268 Liouvillefractional derivative can be rewritten in the ∂u x ∂u x x ∂u x x x form of conservation law form ( 33 ) with ∂ ∂ 2   +D + Dx (W ) − Dx 269 1 a b t n−1 n−α x m ∂u x x ∂u x x x  x C = Dt (0 It u), C = εu + u (u )x x . (37) b ∂ The adjoint equation is similarly to the case of integer+ Dx2 (W ) . (44) 270 ∂u x x x order nonlinear differential equations [25,26] , so we have the adjoint equation to the nonlinear TFDE ( 1 ) For any generator X admitted by Eq. ( 1 ) and any 271 as Euler–Lagrange equation solution of this equation, we have: 272 δL = 0. (38) δu  Considered the case of two independent variables X̄ L + Dt (τ )L + Dx (ξ )L |(1) = 0. (45) 273 t, x, and one dependent variable u(t, x), this fundaThis equality yields the conservation law 274 mental identity can be written as δ Dt (N t L) + Dx (N x L) = 0. (46) 275 + Dt N t + D x N x , X̄ + Dt (τ )l + Dx (ξ )l = W δu (39) ( ( δ ( ( ( where l is the identity operator, δu is the ( Euler-LagrangeEuler– ( Lagrangeoperator, N t and N x are the Noether operators, X̄ is an appropriate prolongation for the Lie point generator 3.2 Conservation laws 276 ∂ ∂ ∂ ∂ ∂ +η + ηα0 + ηx X̄ = τ + ξ In the previous subsection, we gave some basic defini- 277 ∂t ∂x ∂u ∂ Dtα u ∂u x tions. In this subsection, we will present the conserva- 278 ∂ ∂ + ηx x + ηx x x , (40) tion laws. 279 ∂u x x ∂u x x x Dt (C t ) + Dx (C x ) = 0, pro 224 225 A conserved vector satisfies the following conservation equation 257 cted 223 and orre 221 222 3.1 Necessary preliminaries unc 220 123 Journal: 11071 MS: 2156 TYPESET DISK LE CP Disp.:2015/5/15 Pages: 7 Layout: Medium G. Wang et al. 284 285 286 287 288 289 290 291 292 293 294 295 296 297 − (−1)1 J m−1  + 3(b − 1)(a + b − 2)u a+b−3 u 2x +ε+εmu 299 300 301 302 303 304 305      − Dx v(a + b−3)u a+b−2 u x + Dx2 vu a+b−1  + Dx (Wi ) v(a + 3b − 3)u a+b−2 u x − D x ux  − Dx vu a+b−1   +Dx2 (Wi ) vu a+b−1 , where i = 1, 2 and functions Wi are (a + b − 3m + 2) t ut W1 = −u x , W2 = 2u − α   − (a + b − m) x u x . (48) − (−1)1 J (a + b − 3m + 2) t ut W1 = −u x , W2 = 2u − α   − (a + b − m) x u x . (49) ∂L  α  ∂ 0 Dt u  ∂L Wi , Dt1  α  ∂ 0 Dt u ∂L + (−1)1 0 D α−2 (Wi )Dt1  α  t ∂ 0 Dt u   2 2  ∂L  − (−1) J Wi , Dt ∂ 0 Dtα u = v 0 Dtα−1 (Wi ) + J (Wi , vt ) − vt 0 Dtα−2 (Wi ) − J (Wi , vtt ), (50) ∂L ∂L ∂L − Dx + Dx2 ∂u x ∂u x x ∂u x x x ∂L ∂L ∂L + Dx2 (Wi ) + Dx (Wi ) − Dx ∂u x x ∂u x x x ∂u x x x   = Wi v (a + b − 3)u a+b−2 u x x Cix = ξ L + Wi TYPESET DISK LE 312 (52) ((( In this paper, we investigated ( time fractionaltime(( fractionalnonlinear dispersive equation via Lie symmetries and conservation laws. We firstly obtained the Lie point symmetries and perform symmetry reductions. Furthermore, the conservation laws are constructed for the first time in this paper. The obtained results will serve as benchmark in the accuracy testing, comparison of numerical results. There are several issues which need to be pursued furthers. For example, here we have used classical Lie symmetry method for only two independent x, t and one dependent u variables. It is not clear that, how to derive similar results in the case of time FPDEs with more independent and dependent variables. In addition, for thecon  b ua ub servative form (u)αt + εu m + b1 (u = u a xx x 0, one can write the potential system u = vx and bua ub εu m + b1 (u = −vtα , it is also not clear that u a xx whether there exists nonlocal symmetry. It is of interest in general to study whether the method of investigating PDEs can be extended to FPDEs. It is worthy of investigating further and these topics will be reported in the future series of research works. Acknowledgments The authors are thankful for the referees useful suggestions which help us to improve the manuscript. This work is supported by the Research Project of China Scholarship Council ( No. 201406030057 ) , National Natural Science Foundation of China ( NNSFC ) ( Grant No. 11171022 ) , Graduate Student Science and Technology Innovation Activities of Beijing Institute of Technology ( No. 2014cx10037 ) . CP Disp.:2015/5/15 Pages: 7 Layout: Medium 310 311 4 Concluding remarks and discussion 123 Journal: 11071 MS: 2156 309 where i = 1, 2 and functions Wi have the form Also, when α ∈ (1, 2), we get the components of conserved vectors Cit = τ L + (−1)0 0 Dtα−1 (Wi )Dt0 308     + Dx2 (Wi ) vu a+b−1 , (51) − Dx vu a+b−1 = v0 Dtα−1 (Wi ) + J (Wi , vt ), (47) ∂ L ∂ L ∂ L Cix = ξ L + Wi − Dx + Dx2 ∂u x ∂u x x ∂u x x x ∂L ∂L ∂L + Dx2 (Wi ) + Dx (Wi ) − Dx ∂u x x ∂u x x x ∂u x x x   = Wi v (a + b − 3)u a+b−2 u x x  307  + Dx (Wi ) v(a + 3b − 3)u a+b−2 u x − D x ux ∂L Wi , Dt1  α  ∂ 0 Dt u  298 of 283 ∂L  α  ∂ 0 Dt u  pro  306 cted 282 Cit = τ L + (−1)0 0 Dtα−1 (Wi )Dt0 + 3(b − 1)(a + b − 2)u a+b−3 u 2x    + εmu m−1 − Dx v(a + b − 3)u a+b−2 u x   2 a+b−1 + Dx vu orre 281 For the case, when α ∈ (0, 1), using ( 42 ) and ( 44 ) , one can get the components of conserved vectors unc 280 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 Time-fractional nonlinear dispersive equation 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 of 349 350 pro 348 cted 346 347 1. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York ( 1989 ) 2. Ibragimov, N.H. ( ed. ) : CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1–3. CRC Press, Boca ( ((FLRaton Raton, ( 1994 ) ( 3. Bluman, G.W., Cheviakov, A., Anco, S.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York ( 2010 ) 4. Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations. Springer, New York ( 2002 ) 5. Olver, P.J.: Application of Lie Group to Differential Equation. Springer, New York ( 1986 ) 6. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York ( 1982 ) 7. Gang, G.W., et al.: Singular solitons, shock waves, and other solutions to potential KdV equation. Nonlinear Dyn. 76 , 1059–1068 ( 2014 ) 8. Biswas, A., et al.: Solitons and conservation laws of (((( Klein-GordonKlein–Gordonequation with power law and ( log law nonlinearities. Nonlinear Dyn. 73 , 2191–2196 ( 2013 ) 9. Biswas, A.: Solitary waves for power-law regularized longwave equation and R ( m, n ) equation. Nonlinear Dyn. 59 , 423–426 ( 2010 ) 10. Razborova, P., Kara, A.H., Biswas, A.:(Additional con((( servation laws for ( RosenauCKdVCRLWRosenau–KdV– ((( RLWequation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 79 , 743–748 ( 2015 ) 11. Gazizov, R.K., Kasatkin, A.A.: Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66 , 576–584 ( 2013 ) 12. Liu, H.Z.: Complete group classifications and symmetry reductions of the fractional fifth-order KdV types of equations. Stud. Appl. Math. 131 , 317–330 ( 2013 )   13. Gazizov,  R.  K.,R.K.,Kasatkin, A.  A.,A.A.,Yu, S.:  Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik, USATU 9 125–135 ( in Russian ) ( 2007 ) 14. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227 , 81–97 ( 1998 ) 15. Djordjevic, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and ( (( ((( Burgers/Korteweg-deVriesBurgers/Korteweg– ((( ( deVriesfractional equations. J. Comput. Appl. Math. 212 , 701–714 ( 2008 ) 16. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, SYu.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136 , 014016 ( 2009 ) 17. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and ( Korteweg-deKorteweg– (((( deVries equations. J. Math. Anal. Appl. 393 , 341–347 ( 2012 ) 18. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation.  Commun. Nonlinear Sci. Numer.  Simulat.Simul.18 , 2321– 2326 ( 2013 ) 19. Wang, G.W., Xu, T.Z., Feng, T.: Lie symmetry analysis and explicit solutions of the time fractional fifth-Order KdV equation. Plos One 9 ( 2 ) , e88336 ( 2014 ) 20. Wang, G.W., Xu, T.Z.: Invariant analysis and exact solutions ( ((( of nonlinear time fractional ( Sharma-Tasso-OlverSharma– ((( Tasso–Olverequation by Lie group analysis. Nonlinear Dyn. 76 , 571–580 ( 2014 )    21. Wang,  G.  W.,G.W.,Xu, T. Z.:T.Z.:Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation, Bound. Value Probl. ( 2013 ) 22. Huang, Q., Zhdanov, R.: Symmetries and exact solutions ( ((( of the time fractional ( Harry-DymHarry–Dymequation with  Riemann-Liouville derivative.  PhysicaPhys.A 409 , 110– 118 ( 2014 ) 23. Hu, J., Ye, Y., Shen, S., Zhang, J.: Lie symmetry analysis of the time fractional KdV-type equation. Appl. Math. Comput. 233 , 439–444 ( 2014 ) 24. Hashemi, M.S.: Group analysis and exact solutions of ( ( ((( the time fractional ( Fokker-PlanckFokker–Planckequation.   PhysicaPhys.A 417 , 141–149 ( 2015 )  25. Lukashchuk, S.Y.: Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. ( 2015 ) . doi:10.1007/s11071-015-1906-7 26. Gazizov, R.K., Ibragimov, N.H., Lukashchuk, S.Y.: Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Non linear Sci. Numer.  Simulat.Simul. ( 2014 ) . doi:10.1016/j. cnsns.2014.11.010 :M.S.:Lie symmetry   27. Wang,  G.  W.,G.W.,Hashemi, M.S.  analysis and solitons solutions of time fractional K ( m, n )   equation,equation (submitteds*)s*  :A.H.:Group analysis and  28. Wang,  G.  W.,G.W.,Kara, A.  H.  soliton solution of the time fractional generalized Burgers   equation,equation (submitteds*)s*  29. Rosenau, P.: On nonalnalytic solitary waves formed by a nonlinear dispersion. Phys. Lett. A 230 , 305–318 ( 1997 ) 30. Rosenau, P.: Compact and noncompact dispersive patterns. Phys. Lett. A 275 , 193–203 ( 2000 ) 31. Rosenau, P.: On a model equation of traveling and stationary compactons. Phys. Lett. A 356 , 44–50 ( 2006 ) 32. Charalambous, K., Sophocleous, C.: Symmetry analysis for a class of nonlinear dispersive equations. Commun. Nonlin ear Sci. Numer.  Simulat.Simul.22 , 1275–1287 ( 2015 ) 33. Kiryakova, V. : Generalised Fractional Calculus and Applications. In: Pitman Res. Notes in Math., vol. 301, ( 1994 ) 34. Liu, C.S.: Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonlinear Sci. Numer.  Simulat.Simul.22 , 92–94 ( 2015 )  35. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore ( 2010 ) 36. Podlubny,  I . :I.:Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications,applications.Academic press, New York ( 1998 (((( ( ) orre 345 References unc 344 123 Journal: 11071 MS: 2156 TYPESET DISK LE CP Disp.:2015/5/15 Pages: 7 Layout: Medium 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 4