Dear Author, Please, note that changes made to the HTML content will be added to the article before publication, but are not reflected in this PDF. Note also that this file should not be used for submitting corrections. CAF 2936 No. of Pages 6, Model 5G 9 July 2015 Computers & Fluids xxx (2015) xxx–xxx 1 Contents lists available at ScienceDirect Computers & Fluids j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o m p fl u i d 6 7 5 Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation q 8 Gangwei Wang a,⇑, K. Fakhar b 3 4 9 10 11 12 1 2 4 7 15 16 17 18 19 a b School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, PR China Department of Mathematics, University of British Columbia, Vancouver V6T 1Z2, Canada a r t i c l e i n f o Article history: Received 6 July 2014 Received in revised form 28 May 2015 Accepted 26 June 2015 Available online xxxx a b s t r a c t This paper addresses an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers (ZKB) equation. The Lie symmetry analysis leads to many plethora of solutions to the equation. The nonlinear self-adjointness condition for the ZKB equation is established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. In particular, we also get conservation laws of the equation with the corresponding Lie symmetry. Ó 2015 Elsevier Ltd. All rights reserved. 20 21 22 23 24 25 26 Keywords: (2+1)-dimensional Zakharov–Kuznetsov– Burgers equation Lie symmetry analysis Nonlinear self-adjointness Conservation laws 37 1. Introduction 38 The nonlinear evolution equations (NLEEs) are encountered in a variety of scientific fields, such as physics, chemistry, engineering and others. A vast amount of research work has been investigated in the study of exact solutions of the NLEEs, in particular, the solitary wave solutions largely due to their frequent occurrence in nature. Besides their physical relevances, they serve as a bench mark for accuracy of numerical schemes as well as prove to be quiet handy in testing of computer algorithms. Due to the increased interest in the NLEEs, a broad range of analytical and numerical methods have been developed to construct exact solutions to NLEEs. Some of these efficient methods are the Lie symmetry method [1–3], Darboux transformation method [4], Jacobi elliptic method [5], Painleve analysis [6], the inverse scattering method [7], the Baklund transformation method [8], the conservation law method [9], the Hirota bilinear method [10], the ansatz method [11] and many other methods. Zakharov and Kuznetsov [12] established an equation which is related to nonlinear ion-acoustic waves (IAWs) in magnetized 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 q The project is supported by the Research Project of China Scholarship Council (No. 201406030057), National Natural Science Foundation of China (NNSFC) (Grant No. 11171022), Graduate Student Science and Technology Innovation Activities of Beijing Institute of Technology (No. 2014cx10037). ⇑ Corresponding author. E-mail address: pukai1121@163.com (G. Wang). 28 29 30 31 32 33 34 36 35 plasma including cold ions and hot isothermal electrons. Few related studies concerning Zakharov and Kuznetsov and its generalized form are discussed in [13–19]. The quantum hydrodynamic (QHD) model is a generalization of the classical fluid model of plasmas where QHD transport equations are expressed with reference to conservation laws for particle momentum and energy. Several authors for instance, Stenflo et al. [20], Khan et al. [21] etc., have used QHD model to study the linear and nonlinear waves in quantum plasma. Further, the existence of a small number of ions along with the electrons and positron in many astrophysical environments, attracted much attention and consequently lot of work available in the literature (e.g.,[22,23]). It is well know that the small amplitude wave propagation in a medium which posses both the characteristics dispersive and dissipative terms can be best modeled by Korteweg–deVries–Burgers (KdVB) equation. Mamun and Shukla [24] and Shukla and Mamun [25] in their study observed that the dissipative Burger term in KdVB was due to the presence of kinematic viscosity in the plasma. Also, they were able to generate dispersive shock wave in the plasma. El-Bedwehy and Moslem derived the Zakharov Kuznetsov Burgers (ZKB) equation [26] in an electron–positron–ion (e–p–i) plasma and applied their numerical results to the electrostatic fluctuations in the interstellar medium. Masood et al. [27] studies the obliquely propagating nonlinear quantum ion acoustic shock wave in a viscous quantum (e–p–i) magnetoplasma. They have used QHD model with the small amplitude expansion method to independently 56 http://dx.doi.org/10.1016/j.compfluid.2015.06.033 0045-7930/Ó 2015 Elsevier Ltd. All rights reserved. Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 CAF 2936 No. of Pages 6, Model 5G 9 July 2015 2 82 83 84 85 86 87 88 90 G. Wang, K. Fakhar / Computers & Fluids xxx (2015) xxx–xxx derive the ZKB equation. They have used tanh method to obtain the results. In this paper, we consider the (2+1)-dimensional ZKB equation and investigate it from the point view of Lie symmetries and conservation laws. By omitting the details of derivation, we directly write ZKB equation in the form ut þ auux þ buxxx þ cuxyy  duxx  euyy ¼ 0; 103 104 2. Similarity reductions and exact solutions 92 93 94 95 96 97 98 99 100 101 102 h ¼ t; 105 108 109 110 @ ; @x V2 ¼ @ ; @y V3 ¼ @ ; @t V4 ¼ t @ 1 @ þ : @x a @u 154 ð11Þ ð12Þ It is should been noted that all above reduced equation are (1+1)-dimensional PDEs. It is also difficult to get solutions of them. In order to get their solutions, once again, by using Lie symmetry method. For the sake of simplicity, in what follows, we only consider (12) in details. The symmetry algebra of (12) is generated by the vector fields @ !1 ¼ ; @h @ !2 ¼ ; @s @ 1 @ !3 ¼ h þ : @s a @f ð13Þ The combination !1 þ k!2 of the two symmetries !1 and !2 yields the following invariants f ¼ WðhÞ; h ¼ s  kh; ð14Þ and using (14) and (12) is transformed to the nonlinear ODE 0 000 00 kW þ aWW þ ðb þ cÞW  ðd þ eÞW ¼ 0: The corresponding vector fields of (1) are V1 ¼ u ¼ f ðh; sÞ: f h þ affs þ ðb þ cÞf sss  ðd þ eÞf ss ¼ 0: 0 106 s ¼ x  y; 153 Treating f as the new dependent variable and h and s as new independent variables, the ZKB Eq. (1) transforms to ð1Þ where a, b, c, d and e, with d and e being positive, are constant quantities which involves the physical quantities like: mass; density; magnetic field; kinematic viscosity; plasma frequency; superthermality; ion gyrofrequency, etc., while x; y and t are the independent variables that represent the spatial and temporal variables respectively, where as uðx; y; tÞ is the dependent variable that represents the wave profile. For detail discussions reader is refer to [26,27]. The paper is organized in the following manner. In Section 2, similarity reductions and explicit solutions are derived. In Section 3, we will show that this equation is nonlinearly self-adjoint. On the basis of the point symmetries, conservation laws are constructed. Finally, the main findings of the paper are recapitulated in Section 4. 91 (V) V 1 þ V 2 The symmetry V 1 þ V 2 yields the following invariants ð2Þ We make some discussions on the ZKB equation based on the vector fields. ð15Þ ð16Þ n¼0 Substituting (16) into (15), one can get 111 112 113 115 116 117 118 120 121 122 123 124 125 127 128 129 130 132 133 134 135 137 138 139 140 142 143 144 145 147 148 149 150 152 (I) V 1 For the generator V 1 , we have u ¼ f ðg; hÞ; where g ¼ y; h ¼ t are the group-invariants. Substituting (3) into (1), one can get ð4Þ It is important to note that (4) is the celebrated Heat equation. (II) V 2 For the generator V 2 , we get u ¼ f ðr; hÞ; ð5Þ where r ¼ x; h ¼ t are the group-invariants. Substituting (5) into (1), we reduce it to the following PDE f h þ affr þ bfrrr  dfrr ¼ 0: ð6Þ (III) V 3 For the generator V 3 , we get u ¼ f ðr; gÞ; ð8Þ (IV) V 4 In this case, one can obtain x ; at 163 164 165 166 167 168 169 170 172 173 174 175 177 179 181 182 183 184 186 n¼1 j¼0 1 X þ 2ðd þ eÞc2 þ ðd þ eÞ ðn þ 1Þðn þ 2Þcnþ2 hn þ 6ðb þ cÞc3 n¼1 1 X þ ðb þ cÞ ðn þ 3Þðn þ 2Þðn þ 1Þcnþ3 hn ¼ 0: ð17Þ n¼1 Next, from (17), for the case of n ¼ 0, one gets kc1  ac0 c1  2ðd þ eÞc2 c3 ¼ : 6ðb þ cÞ ð9Þ ð10Þ 190 191 192 ð18Þ Generally, for n P 1, one obtains 194 195 196 1 kðn þ 1Þcnþ1  ðd þ eÞðn þ 1Þðn þ 2Þ cnþ3 ¼ ðb þ cÞðn þ 1Þðn þ 2Þðn þ 3Þ ! n X ð19Þ cnþ2  a ðn þ 1  jÞcj cnþ1j : 198 199 200 1 X WðhÞ ¼ c0 þ c1 h þ c2 h2 þ c3 h3 þ cnþ3 hnþ3 n¼1 ¼ c 0 þ c 1 h þ c 2 h2 þ þ where h ¼ t; g ¼ y are the group-invariants. Substituting (9) into (1), one can obtain hfh þ f  ehfgg ¼ 0: n¼1 Thus, the power series solution of (16) is as follows where r ¼ x; g ¼ y are the group-invariants. Putting (7) into (1), one can obtain u ¼ f ðh; gÞ þ 160 162 187 188 j¼0 ð7Þ affr þ bfrrr þ cfrgg  dfrr  efgg ¼ 0: 159 1 1 X n X X  kc1  k ðn þ 1Þcnþ1 hn þ ac0 c1 þ a ðn þ 1  jÞcj cnþ1j hn ð3Þ f h  efgg ¼ 0: 158 178 Now, we search a solution of (15) in a power series of the form [28,29] 1 X W¼ c n hn : 155 157 kc1  ac0 c1  2ðd þ eÞc2 3 h 6ðb þ cÞ 1 X 1 kðn þ 1Þcnþ1 ðb þ cÞðn þ 1Þðn þ 2Þðn þ 3Þ n¼1 ! n X ðd þ eÞðn þ 1Þðn þ 2Þcnþ2  a ðn þ 1  jÞcj cnþ1j hnþ3 : ð20Þ j¼0 Consequently, the exact power series solution of (1) can be written as follows Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033 202 203 204 CAF 2936 No. of Pages 6, Model 5G 9 July 2015 3 G. Wang, K. Fakhar / Computers & Fluids xxx (2015) xxx–xxx 205 uðx;y;tÞ ¼ c0 þ c1 ðx  y  ktÞ þ c2 ðx  y  ktÞ2 þ c3 ðx  y  ktÞ3 1 X þ cnþ3 ðx  y  ktÞnþ3 ¼ c0 þ c1 ðx  y  ktÞ In particular, if we let C 1 ¼ 1; C 2 ¼ 1; p ¼ 0, and 4rq  p2 > 0, one can get n¼1 kc1  ac0 c1  2ðd þ eÞc2 ðx  y  ktÞ3 þ c2 ðx  y  ktÞ þ 6ðb þ cÞ 1 X 1 þ ðkðn þ 1Þcnþ1 ðb þ cÞðn þ 1Þðn þ 2Þðn þ 3Þ n¼1 ! n X ðd þ eÞðn þ 1Þðn þ 2Þcnþ2  a ðn þ 1  jÞcj cnþ1j ðx  y  ktÞnþ3 ; 2 j¼0 207 ð21Þ 208 where ci ði ¼ 0; 1; 2; 3Þ are arbitrary constants, the other coefficients cn ðn P 3Þ also can derived. 209 210 211 212 213 214 215 217 218 219 220 221 223 224 225 226 227 229 230 231 232 233 234 Remark 1. The explicit solutions of other equations can also be derived in the same way. Here we do not list them for simplicity. In order to search for others explicit solutions of Eq. (1), we make use of the auxiliary equation, i.e., the Riccati equation of the following ’’general form’’ u0 ¼ r þ pu þ qu2 ; ð22Þ and use its solution to construct the solutions for ZKB equation. Here, p; q; r are real constant. By omitting the details, we directly write the general solution of (22) as pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h h 2 2 p 4rq  p2 C 1 e2 4rqp  C 2 e2 4rqp p ffiffiffiffiffiffiffiffiffiffiffi p ffiffiffiffiffiffiffiffiffiffiffi  ; u¼ h h 2 2 2q 2q C e2 4rqp þ C e2 4rqp 1 237 238 ð23Þ 2 248 249 250 252 253 263 3. Conservation laws of (1) 264 In this section, we obtain conservation laws for the ZKB equation. 265 Theorem 1 ([30,31]). The system and its adjoint equation 267 266 268 F  ðx; u; v ; uð1Þ ; v ð1Þ ; uð2Þ ; v ð2Þ ; . . . ; uðsÞ ; v ðsÞ Þ ¼ 0; ð29Þ 270 271 L ¼ v Fðx; u; uð1Þ ; uð2Þ ; . . . ; uðsÞ Þ: ð30Þ 272 274 Definition 1. [30,31] The first equation of (29) is said to be nonlinearly self-adjoint if for some arbitrary function /ðx; uÞ – 0, we have 277 q2 ðb þ cÞ 12 ð5 bp þ 5 cp  d  eÞq ; a1 ¼  ; a 5 a 5aa0  6pðd þ eÞ þ 60qrðb þ cÞ k¼ ; 5 where k is an indeterminate variable coefficient. 2 2 276 2 2 pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi !2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h h 2 2 4rq  p2 C 1 e2 4rqp  C 2 e2 4rqp q 2 ðb þ c Þ p p ffiffiffiffiffiffiffiffiffiffiffi p ffiffiffiffiffiffiffiffiffiffiffi uðx;y;tÞ ¼ 12  h h 2 2 2q a C e2 4rqp þ C e2 4rqp 2q 1 F jv ¼/ ¼ kðx; u; uð1Þ ; . . .ÞF; ð31Þ 279 280 282 283 284 ð26Þ 2 12 ð5bp þ 5cp  d  eÞq  5 a pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi ! pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi h h 2 2 4rq  p2 C 1 e2 4rqp  C 2 e2 4rqp p pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi   þ a0 ; h h 2 2 2q C e2 4rqp þ C e2 4rqp 2q  278 ð25Þ where a0 is a arbitrary constant. Also, Theorem 2 [32]. Every Lie point, Lie-Bäcklund and non-local symmetry of Eq. (1) provides a conservation law for Eq. (1) and the adjoint 285 equation. Then the elements of conservation vector ðC 1 ; C 2 ; C 3 Þ are given by 287 " @L @L C ¼nLþW  Dj @uai @uaij " ! @L a  Dk þ Dj ðW Þ @uaij i ! a i a where W ¼ g þ Dj Dk @L @uaijk !! @L @uaijk !# 286 288 289 # þ ... ; ð32Þ 291 a  n j ua . j 292 ð27Þ 2 here h ¼ x  y  kt, and k is given by (25). The solution (27) is the general solution of ZKB equation and therefore several independently real solutions can be obtained. For instance, the exact solution (21) which was obtained by ’’tanh method’’ in Ref. [27], can be retrieved from (27) by choosing 2 251 261 !2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4rq  p2 q ðb þ cÞ h p 4rq  p2  uðx;y;tÞ ¼ 12 tan h a 2 2q 2q  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   12 ð5bp þ 5cp  d  eÞq h p  tan h 4rq  p2  þ a0 : 5 a 2 2q 2 ð24Þ 1 246 260 where a0 ; a1 ; a2 are constants to be determined. Substituting the ansatz (24) along with (22) into (15), collecting coefficients of monomials of u with the aid of Maple, and then setting each coefficients equal to zero, one gets f ðhÞ ¼ a0 þ a1 u þ a2 u2 ; From the asatz (24) and making use of Eqs. (25) and (23), one can get the explicit solution of (1) 247 259 275 241 245 In particular, if we set C 1 ¼ 1; C 2 ¼ 1, and 4rq  p2 > 0, one can derive 258 In the following we recall the ’’new conservation theorem’’ given by Ibragimov in [31]. ðd þ eÞ ¼ 25p ðb þ cÞ þ 100qrðb þ cÞ : 243 256 q2 ð b þ c Þ uðx;y;tÞ ¼ 12 a has a formal Lagrangian, namely where C 1 ; C 2 are arbitrary constants. By balancing the highest derivative and nonlinear terms in (15), we assume the solution of (1) of the form 240 242 255 Fðx; u; uð1Þ ; uð2Þ ; . . . ; uðsÞ Þ ¼ 0; a2 ¼ 12 236 !2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4rq  p2 h p 4rq  p2  cot h 2 2q 2q  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   12 ð5bp þ 5cp  d  eÞq h p  cot h 4rq  p2  þ a0 : ð28Þ 5 a 2 2q 254 2 9ðdþeÞ ðdþeÞ C 1 ¼ C 2 ¼ 1; p ¼ 0; a0 ¼ 25aðbþcÞ , and qr ¼ 100ðbþcÞ 2 . Similarly, one can compare the accuracy of the numerical results obtained in [26] via (27). 3.1. Nonlinear self-adjointness 293 For (1), the adjoint equation has the form  F ¼ ðv t þ auv x þ bv xxx þ cv xyy þ dv xx þ ev yy Þ ¼ 0; 294 ð33Þ and the Lagrangian in the symmetrized form   L ¼ v ut þ auux þ buxxx þ cuxyy  duxx  euyy : 295 297 298 ð34Þ If we substitute u instead of v in Eq. (33), one can find that Eq. (1) is not recovered. Therefore, we can say Eq. (1) is not self adjoint. Next, Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033 299 301 302 303 CAF 2936 No. of Pages 6, Model 5G 9 July 2015 4 304 305 306 G. Wang, K. Fakhar / Computers & Fluids xxx (2015) xxx–xxx we look for an explicit form of /ðx; uÞ – 0 for Eq. (1) that holds Eq. (33).    1  L ¼ v ut þ auux þ buxxx þ c uxyy þ uyxy þ uyyx  duxx  euyy : 3 ð43Þ 349 Consider Theorem 2, the corresponding vector fields is given by 350 v t þ auv x þ bv xxx þ cv xyy þ dv xx þ ev yy jv ¼/ðx;uÞ 308 309 310   ¼ k ut þ auux þ buxxx þ cuxyy  duxx  euyy : ð35Þ @ @ @ V ¼ n1 ðx; y; t; uÞ þ n2 ðx; y; t; uÞ þ n3 ðx; y; t; uÞ @t @x @y @ þ /ðx; y; t; uÞ : @u If we set v ¼ /ðt; x; y; uÞ, one can get v t ¼ /t þ /u ut ; v x ¼ /x þ /u ux ; v xx ¼ /xx þ 2/xu ux þ /uu u2x þ /u uxx ; v yy ¼ /yy þ 2/yu uy þ /uu u2y þ /u uyy ; The conservation law is decided by 1 314 315 318 319 321 322 323 324 ð36Þ Solve them, one can get the solution c3 331 335 336 /¼  pffiffiffiffi   2 e k1 y c 1 þ c 2 pffiffiffiffi : e k1 y ek1 et ð39Þ ð40Þ In particular, (39) has a special solution / ¼ c 1 y þ c2 ; ð41Þ where c1 ; c2 and c3 are constants. We, thus, have the following statement. 339 3.2. Conservation laws of (1) 340 We now construct the conservation laws by using the adjoint equation and symmetries of (1). For (1), the adjoint equation is given by 342 343 345 346 347 þ W yy @L ; @uxyy F ¼ v t þ auv x þ bv xxx þ cv xyy þ dv xx þ ev yy ; and the Lagrangian in the symmetrized form ð47Þ 365 @L @L @L C ¼ n L þ W Dy þ Dxy þ Dyx @uyy @uyxy @uyyx þ W x Dy þ W yx @L @L @L @L þ Wy þ W xy  Dx @uyxy @uyy @uyyx @uyxy @L ; @uyyx ð42Þ ð48Þ that is 368 369 370 1   1 C ¼ n L þ W auv  Dx ðdv Þ þ Dxx ðbv Þ þ Dyy cv 3    1 þ W x ðdv  Dx ðbv ÞÞ þ W y Dy þ W xx bv cv 3 1 þ W yy cv 3   1 2 ¼ n L þ W auv þ dv x þ bv xx þ cv yy  W x ðdv þ bv x Þ 3   1 1 cv y þ bv W xx þ cv W yy ;  Wy 3 3 2 Theorem 3. The ZKB Eq. (1) is nonlinearly self-adjoint with the substitution v ¼ / and / given by (40) or (41). 341 @L @L @L @L þ W y Dy þ W xx  Dx @uxx @uxxx @uxyy @uxxx C ¼ n L þ Wv; 338 337 þ Wx 3 1 3b/xu þ 2d/u ¼ 0; c/xu þ 2e/u ¼ 0; 327 362 2 ð38Þ Note that the other coefficients of u and all of the derivative yields 326 360 @L @L @L @L C ¼n LþW  Dx þ Dxx þ Dyy @ux @uxx @uxxx @uxyy 2 From the coefficient of the term ut , one can get k ¼ /u : ð46Þ 359 366 þ2/yuu ux uy þ2/yu uxy þ/uux u2y þ/uuu ux u2y þ2/uu uy uyx    þ/ux uyy þ/uu ux uyy þ/u uxyy ¼ k ut þauux þbuxxx þcuxyy duxx euyy : ð37Þ 3b/xuu þ d/uu ¼ 0; c/xuu þ e/uu ¼ 0; /t þ au/x þ b/xxx þ d/xx þ e/yy þ c/xyy ¼ 0: 332 334 1 3 3b/xxu þ 2d/xu þ c/yyu ¼ 0; 2ec/yu þ 2c/xyu ¼ 0; 330 358 Plugging them into (35), one can arrive at the following self-adjointness condition b/uuu ¼ 0; c/uuu ¼ 0; 3b/uu ¼ 0; 2c/yuu ¼ 0; /yu ¼ 0; 328 Here the conserved vector C ¼ ðC ; C ; C Þ are given by (32) and the components given by 3 363 /t þ/u ut þauð/x þ/u ux Þþdð/xx þ2/xu ux þ/uu u2x þ/u uxx Þ    þe /yy þ2/yu uy þ/uu u2y þ/u uyy þb /xxx þ3/xxu ux þ3/xuu u2x   þ3/xu uxx þ/uuu u3x þ3/uu ux uxx þ/u uxxx þc /xyy þ/yyu ux þ2/xyu uy 317 357 2 @L C ¼n LþW ; @ut þ /uux u2y þ /uuu ux u2y þ 2/uu uy uyx þ /ux uyy 313 355 ð45Þ 1 v xyy ¼ /xyy þ /yyu ux þ 2/xyu uy þ 2/yuu ux uy þ 2/yu uxy 353 354 3 1 þ 3/uu ux uxx þ /u uxxx ; þ /uu ux uyy þ /u uxyy : 2 Dt ðC Þ þ Dx ðC Þ þ Dy ðC Þ ¼ 0: v xxx ¼ /xxx þ 3/xxu ux þ 3/xuu u2x þ 3/xu uxx þ /uuu u3x 312 ð44Þ 351 ð49Þ 372 373 2     2 1 þ W x Dy C 3 ¼ n3 L þ W Dy ðev Þ þ Dxy cv cv 3 3   1 2 þ W y ev  Dx þ W xy cv cv 3 3     2 1 1 3 ¼ n L þ W ev y þ cv xy  cv y W x  W y ev þ cv x 3 3 3 2 þ cv W xy ; 3 ð50Þ 376 ð51Þ with W ¼ /  n1 ut  n2 ux  n3 uy : 375 378 379 380 ð52Þ Next, we consider following cases. Case 1. For the operator V ¼ @t@ , we have Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033 382 383 384 385 386 CAF 2936 No. of Pages 6, Model 5G 9 July 2015 G. Wang, K. Fakhar / Computers & Fluids xxx (2015) xxx–xxx 388 W ¼ ut ; 389 we can get the conservation vector of (1) 392 C 1 ¼ ut v ; 393  390 395 396 398 ð53Þ ð54Þ  1 C 2 ¼ ut auv þ dv x þ bv xx þ cv yy þ utx ðdv þ bv x Þ 3 1 1 þ cuty v y  bv utxx  cv utyy ; 3 3     2 1 1 C 3 ¼ ut ev y þ cv xy þ cv y utx þ uty ev þ cv x 3 3 3 2  cv utxy : 3 400 401 403 W ¼ ux ; 404 one can obtain the conservation vector of (1) ð56Þ ð57Þ 405 1 407 C ¼ ux v ; 408   1 C 2 ¼ ux auv þ dv x þ bv xx þ cv yy þ uxx ðdv þ bv x Þ 3 1 1 þ cuxy v y  bv uxxx  cv uxyy ; 3 3     2 1 1 C 3 ¼ ux ev y þ cv xy þ cv y uxx þ uxy ev þ cv x 3 3 3 2  cv uxxy : 3 410 411 413 414 415 W ¼ uy ; 419 we can reach the conservation vector of (1) 422 C 1 ¼ uy v ; 423   1 C 2 ¼ uy auv þ dv x þ bv xx þ cv yy þ uyx ðdv þ bv x Þ 3 1 1 þ cuyy v y  bv uyxx  cv uyyy ; 3 3     2 1 1 C 3 ¼ uy ev y þ cv xy þ cv y uyx þ uyy ev þ cv x 3 3 3 2  cv uyxy : 3 420 425 426 428 429 430 431 ð58Þ ð59Þ ð60Þ Case 3. @ For the Lie algebra V ¼ @y , one can arrive at 416 418 ð61Þ ð62Þ ð63Þ ð64Þ Case 4. @ @ For the operator V ¼ t @x þ 1a @u , we have 1  tux ; a 433 W¼ 434 we derive the conservation vector of (1) ð65Þ 435 437 438 440 1 v  tux v ; ð66Þ a    1 1 auv þ dv x þ bv xx þ cv yy þ tuxx ðdv þ bv x Þ C2 ¼  tux a 3 1 1 ð67Þ þ ctuxy v y  btv uxxx  ctv uxyy ; 3 3 C1 ¼ 441 ð68Þ 443 It is clear that they are involves an arbitrary solution v of the adjoint Eq. (33), and they presents an infinite number of the conservation laws. 444 4. Conclusions 447 In the present paper, by using the Lie symmetry groups, we studied the symmetry properties, similarity reduction forms and explicit solutions of the (2+1)-dimensional ZKB equation. Moreover, we also constructed the power series solution of the equation. At last, we derived the nonlinear self-adjointness of Eq. (1), by virtue of this fact, infinitely many conservation laws of the equation are exhibited. Furthermore, the results obtained here can be useful in enhancing the understanding of nonlinear propagation of small amplitude electrostatic structures in dense, dissipative (e–p–i) magnetoplasmas. 448 Acknowledgement 458 We are extremely thankful for the reviewers for their many valuable suggestions that greatly improved this paper. 459 References 461 [1] Olver PJ. Application of lie group to differential equation. New York: Springer; 1986. [2] Ovsiannikov LV. Group analysis of differential equations. New York: Academic Press; 1982. [3] Bluman GW, Kumei S. Symmetries and differential equations. New York: Springer; 1989. [4] Li YS, Ma WX, Zhang JE. Darboux transformations of classical Boussinesq system and its new solutions. Phys Lett A 2000;275:60–6. [5] Zayed EME, Zedan HA, Gepreel KA. On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations. Chaos, Solitons Fractals 2004;22:285–303. [6] Kumara S, Singhb K, Gupta RK. Painleve analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer–Kaup equations. Commun Nonlinear Sci Numer Simulat 2012;17:1529–41. [7] Ablowitz MJ, Segur H. Solitons and inverse scattering transform. Philadelphia: SIAM; 1981. [8] Fuchssteiner Benno, Fokas Athanassios S. Symplectic structures, their Backlund transformations and hereditary symmetries. Phys D: Nonlinear Phenom 1981;4:47–66. [9] Avdonina ED, Ibragimov NH, Khamitova R. Exact solutions of gasdynamic equations obtained by the method of conservation laws. Commun Nonlinear Sci Numer Simulat 2013;18:2359–66. [10] Hirota R. The DirectMethod in soliton theory. Cambridge: Cambridge University Press; 2004. [11] Biswas A, Kara AH, Bokhari AH, Zaman FD. Solitons and conservation laws of Klein–Gordon equation with power law and log law nonlinearities. Nonlinear Dyn 2013;73:2191–6. [12] Zakharov VE, Kuznetsov EA. On three-dimensional solitons. Sov Phys -JETP 1974;39:285–8 [Appl Math Comput]. [13] Biswas A. 1-Soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl Math Lett 2009;22:1775–7. [14] Biswas A, Zerrad E. 1-Soliton solution of the Zakharov–Kuznetsov equation with dual-power law nonlinearity. Commun Nonlinear Sci Numer Simulat 2009;14:3574–7. [15] Biswas A. 1-Soliton solution of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys Lett A 2009;373:2931–4. [16] Krishnan EV, Biswas A. Solutions to the Zakharov–Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods. Phys Wave Phenom 2010;18:256–61. [17] Johnpillai AG, Kara AH, Biswas A. Symmetry solutions and reductions of a class of generalized (2+1)-dimensional Zakharov–Kuznetsov equation. Int J Nonlin Sci Num 2011;12:35–43. [18] Ebadi G, Mojaver A, Milovic Da, Johnson S, Biswas A. Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magnetoplasmas. Astrophys Space Sci 2011;341:507–13. 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 445 446 ð55Þ Case 2. @ For the generator V ¼ @x , we get 399   1 2 1 ev y þ cv xy þ ctv y uxx C3 ¼  tux a 3 3   1 2 þ tuxy ev þ cv x  ctv uxyx : 3 3 5  Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033 449 450 451 452 453 454 455 456 457 460 CAF 2936 No. of Pages 6, Model 5G 9 July 2015 6 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 G. Wang, K. Fakhar / Computers & Fluids xxx (2015) xxx–xxx [19] Bhrawy AH, Abdelkawy MA, Kumar S, Johnson S, Biswas A. Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magnetoplasmas. Indian J Phys 2013;87:455–63. [20] Stenflo L, Shukla PK, Marklund M. New low-frequency oscillations in quantum dusty plasmas. Europhys Lett 2006;74:844–6. [21] Khan SA, Masood W, Siddiq M. Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas. Phys Plasmas 2009;16:013701. [22] Hasegawa H, Irie S, Usami S, Ohsawa Y. Perpendicular nonlinear waves in an electronpositronion plasma. Phys Plasmas 2002;9:2549–61. [23] Masood W, Rizvi H, Hussain S. Two dimensional electromagnetic shock structures in dense electron-positron-ion magnetoplasmas. Astrophys Space Sci 2011;332:287–99. [24] Mamun AA, Shukla1 PK. Cylindrical and spherical dust ion-coustic solitary waves. Phys Plasmas 2002;9:1468–70. [25] Shukla PK, Mamun AA. Solitons, shocks and vortices in dusty plasmas. New J Phys 2003;5:17. [26] El-Bedwehy NA, Moslem WM. Zakharov–Kuznetsov–Burgers equation in superthermal electron-positron-ion plasma. Astrophys Space Sci 2011;335:435–42. [27] Masood W, Rizvi H, Siddiq M. Obliquely propagating nonlinear structures in dense dissipative electron positron ion magnetoplasmas. Astrophys Space Sci 2012;337:629–35. [28] Liu H, Li J. Lie symmetry analysis and exact solutions for the short pulse equation. Nonlinear Anal 2009;71:2126–33. [29] Wang GW, Liu XQ, Zhang YY. Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation. Commun Nonlinear Sci Numer Simulat 2013;18:2313–20. [30] Ibragimov NH. Integrating factors, adjoint equations and Lagrangians. J Math Anal Appl 2006;318:742–57. [31] Ibragimov NH. Nonlinear self-adjointness and conservation laws. J Phys A: Math Theor 2011;44:432002. [32] Ibragimov NH. A new conservation theorem. J Math Anal Appl 2007;333:311–28. 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 Please cite this article in press as: Wang G, Fakhar K. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov–Kuznetsov–Burgers equation. Comput Fluids (2015), http://dx.doi.org/10.1016/j.compfluid.2015.06.033